Influence of cancer disease on dielectric characteristics of structural-functional state of erythrocyte membranes

Authors

  • Liliya Batyuk Kharkiv National Medical University ave. Lenina 4, Kharkiv, Ukraine, 61022, Ukraine

DOI:

https://doi.org/10.15587/2313-8416.2015.47546

Keywords:

erythrocytes, erythrocyte ghosts, dielectric relaxation frequency, dielectric permeability, hydration, temperature.

Abstract

Aim. To define the character of mutagenic influence of cancer disease on the dielectric relaxation frequency of the water molecules in suspensions and erythrocyte ghosts in diapason of ultrahigh frequencies (UHF).

Methods. The study of dielectric relaxation frequency of the water molecules in solutions of erythrocytes and erythrocyte ghosts was carried out with the method of measurements of an actual (ε′) and imaginary (ε′′) parts of complex dielectric permeability. The value of dielectric constant ε′ was defined by the measurement of the resonance frequency (Δf) of resonator with pattern relative to an empty resonator and the value ε′′ - by the value of damping of power of UHF field as a result of introduction of dielectric in resonator.

Results. There were received the temperature dependencies of dielectric permeability for suspensions and erythrocyte ghosts in donors and cancer patients. In suspension of donor erythrocytes in temperature area 6-12, 17-40 and 43-46 °С and in suspension of erythrocytes of patients at temperatures 9-18, 23-37 and 43-46°С, it were observed the deviation of dielectric indicators from the monotonous growth that was attended by the reliable growth of the dielectric relaxation frequency fd of the water molecules in suspension of patient erythrocytes compared with the dielectric relaxation frequency fd of the water molecules in suspension of donor erythrocytes. There were calculated the values of energy of time activation of dielectric relaxation of the water molecules in given systems.

Conclusions. It was detected the growth of the dielectric relaxation frequency of the water molecules in suspension of erythrocytes of cancer patients in temperature interval 1-46 °С compared to the dielectric relaxation frequency of the water molecules in suspension of erythrocytes of the healthy donors. It was revealed that in temperature diapason 6-12 °С, 43-46 °С in suspension of donor erythrocytes and in temperature diapason 9-18 °С, 23-37 °С, 43-46 °С in suspension of erythrocytes of cancer patients take place the changes of the state of water that leads to loosening of the structure of lipid biolayer of membrane.

 

Author Biography

Liliya Batyuk, Kharkiv National Medical University ave. Lenina 4, Kharkiv, Ukraine, 61022

Candidate of Biological Sciences

Department of Medical and Biological Physics and Medical Information Science

References

Cancer in Ukraine, 2013-2014. Bulletin of national cancer registry of Ukraine (english) (2015). Ukrainian cancer registry statistics, 16.

Bolis, L. S., Hoffman, D. F., Lif, A. (1980). Membranu i bolezn' [Membranu i bolezn']. Moscow: Мedicine, 408.

Morariu, V. V., Benga, G. (1984). Water diffusion through erythrocyte membranes in normal and pathological subjects: nuclear magnetic resonance investigations. Membrane processes, 121–139. doi: 10.1007/978-1-4613-8274-4

Komarov, F. I., Korovkin, B. F., Menshikov, V. V. (1981). Biohimicheskie issledovaniya v klinike [Biohimicheskie issledovaniya v klinike]. Lviv: Мedicine, 406.

Schwan, H. P. (1981). Electrical Properties of Cells: Principles, Some Recent Results, and Some Unresolved Problems. The Biophysical Approach to Excitable Systems, 3–24. doi: 10.1007/978-1-4613-3297-8_1

Grshcenko, V. I., Magidov, S. H., Moiseev, V. A., Nadrid, O. A. (1995). Vlijanie temperatyru i consentrasij razlichnux veschestv na mikrovjazkost' citozolja jeritrocitov. Biofizika, 40 (1), 106–109.

Verbavatz, J. M., Brown, D., Sabolic, I. (1993). Tetrameric assembly of CHIP28 water channels in liposomes and cell membranes: a freeze-fracture study. The Journal of Cell Biology, 123 (3), 605–618. doi: 10.1083/jcb.123.3.605

Antonchenko, V. Ya. (1983). Mikroskopicheskaya teoriya vody [Mikroskopicheskaya teoriya vody]. Naukova dumka, 160.

Becker, F. F., Wang, X. B., Huang, Y., Pethig, R., Vykoukal, J., Gascoyne, P. R. (1995). Separation of human breast cancer cells from blood by differential dielectric affinity. Proceedings of the National Academy of Sciences, 92 (3), 860–864. doi: 10.1073/pnas.92.3.860

Guravlev, A. K., Myrahko, V. V. (1984). Membranu jeritrocitov pri zlokachestvennom roste. Bulletin of Experimental Biology and Medicine, 98 (11), 596–598.

Chelidze, T. (2002). Dielectric spectroscopy of blood. Journal of Non-Crystalline Solids, 305 (1–3), 285–294. doi: 10.1016/s0022-3093(02)01101-8

Bothwell, T. P., Schwan, H. P. (1956). Electrical Properties of the Plasma Membrane of Erythrocytes at Low Frequencies. Nature, 178 (4527), 265–266. doi: 10.1038/178265b0

Asami, K. (2006). Dielectric dispersion of erythrocyte ghosts. Physical Review E, 73 (5), 052903–052905. doi: 10.1103/physreve.73.052903

Kotb, M. A., Ramadan, H. S. (2014). Dielectric properties of red blood corpuscles of workers chronically exposed to benzene in workplace. European Scientific Journal June, 10 (18), 365–378.

Solov'ev, D. V., Gorobchenko, T. A., Shatalova, T. A. et al. (2011). Dijelektricheskaja pronicaemost' jeritrocitov krolej na chastote 9,2 GGc pri diabete 2 tipa i primenenii saharosnizhajushhih sredstv. Bіofіzichnij vіsnik, 27 (2), 40–49.

Zhiljakova, T. A. (1991). Temperaturozavisimye izmenenija sostojanija vody v biologicheskih membranah po dannym metodov JaMR i SVCh-dijelektrometrii. Kharkiv, 170.

Cleary, S. F., Liu, L. M. (1988). Radiofrequency/Microwave Cell Absorption and Action Spectroscopy. Technical Report, 15.

Mamotyuk, E. M., Batyuk, L. V., Leonova, I. A., Yrazova, V. I. (2003). Issledovaniya termoystoichivosti fraksij jeritrocitov v norme i pri patologii. III Congress on radiation research (radiobiology and radioecology). Kiev, 235.

Batyuk, L. V., Gatash, S. V., Tovstiak, V. V. (2004). Influence of temperature of the aggregation of erythrocytes in patients with malignant neoplasms. Abstracts of Ukrainian Society of Cell Biology. Lviv, 66.

Batyuk, L. V. (2004). The analysis of acid hemolysis parameters and erythrocyte thermal resistance at radiation therapy of malignant tumors. Ukrainian Journal of Radiology, 12 (4), 135–141.

Borisova, A. G., Olejnik, E. K. (2001). Analiz izmenenij termorezistentnosti jeritrocitov pri rake legkogo. Klinicheskaja laboratornaja diagnostika, 5, 14–16.

Gasan, A. I., Kashpyr, V. A., Maleev, V. Ja. (1994). Termicheskie perestroiki sivorotochnogo albumina. Biofizika, 39 (2), 588–593.

Haggis, G. H., Hasted, J. B., Buchan, T. J. (1952). The dielectric properties of water in solutions. Journal of Chemical Physics, 20 (9), 1453–1456.

Frelih, G. (1960). Teorija dijelektrikov [Teorija dijelektrikov]. Мoscow: Izd-vo IL, 251.

Cook, H. F. (1951). Dielectric Behaviour of Human Blood at Microwave Frequencies. Nature, 168 (4267), 247–248. doi: 10.1038/168247a0

Tiffert, T., Lew, V. L., Ginsburg, H., Krugliak, M., Croisille, L., Mohandas, N. (2005). The hydration state of human red blood cells and their susceptibility to invasion by Plasmodium falciparum. Blood, 105 (12), 4853–4860. doi: 10.1182/blood-2004-12-4948

Dix, J. A., Solomon, A. K. (1984). Role of membrane proteins and lipids in water diffusion across red cell membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes, 773 (2), 219–230. doi: 10.1016/0005-2736(84)90085-3

Schwan, H. P., Carstensen, E. L. (1957). Dielectric Properties of the Membrane of Lysed Erythrocytes. Science, 125 (3255), 985–986. doi: 10.1126/science.125.3255.985

Batyuk, L. V., Gatash, S. V., Gorobchenko, O. T., Nikolov, O. T. (2002). Dielectric properties of human erythrocytes in normal and carcinogenic state. Bіofіzichnij vіsnik, 1 (10(560)), 54–57.

Nikolov, O. T., Zhiljakova, T. A. (1991). Izmerenie kompleksnoj dijelektricheskoj pronicaemosti zhidkih dijelektrikov s bol'shimi poterjami. Zh. fiz. Him, 65 (5), 1312–1316.

Hackl, E. V., Gatash, S. V., Nikolov, O. T. (2005). Using UHF-dielectrometry to study protein structural transitions. Journal of Biochemical and Biophysical Methods, 63 (2), 137–148. doi: 10.1016/j.jbbm.2005.04.002

Glesston, S., Leder, L. B., Eiring, G. (1948). Teorija absoljutnux skorostej reaksij. Мoscow: IIL, 584.

Baeva, E. V. (1979). Insulin deponirujashaja funkcija pri rake molochnoi gelezu, 1 (1), 69–70.

Hyshiktuev, B. S., Hyshiktueva, N. A., Ivanov, V. N. et al. (1994). The fatty acid composition of lipids of blood plasma and red blood cells in patients with lung cancer. Probl. Med. Chemistry, 40 (5), 48–50.

Berezhnaya, N. M. (2009). Role of immune system cells in tumor microenvironment. Cells and cytokines – the components of inflammation. Oncology, 11 (1), 6–17.

Berezhnaya, N. M., Chekhun, V. F. (2005). Immunology of tumor growth [Immunology of tumor growth]. Naukova dumka, 792.

Blyum, N. E., Antonov, A. P., Asadullina, R. R. et. al. (2006). Osobennosti citikinovogo balanca pri hronocheskoj obstryktivnoj bolezni legkix. Roc.med. zurnal, 14 (22), 34–39.

Tan, T.-T., Coussens, L. M. (2007). Humoral immunity, inflammation and cancer. Current Opinion in Immunology, 19 (2), 209–216. doi: 10.1016/j.coi.2007.01.001

Gordon, E. (1979). The Organic Chemistry of Electrolyte Solutions. Мoscow: Mir, 712.

Potapov, A. A. (1993). Dielectric properties of water and proton activation mechanism of polarization. Zurnal obsej himii, 63 (7), 1461–1471.

Sorokina, Z. A. (1978). Sostojanie kalija, natrija i vodu v citoplazme kletok [Sostojanie kalija, natrija i vodu v citoplazme kletok]. Naukova dumka, 212.

Bjerrum, P. J., Tunnicliff, G. (1989). The Red Cell Membrane: A Model for Solute Transport. The human Press Inc., 465.

Downloads

Published

2015-07-29

Issue

Section

Medical