Influence of cancer disease on dielectric characteristics of structural-functional state of erythrocyte membranes
DOI :
https://doi.org/10.15587/2313-8416.2015.47546Mots-clés :
erythrocytes, erythrocyte ghosts, dielectric relaxation frequency, dielectric permeability, hydration, temperature.Résumé
Aim. To define the character of mutagenic influence of cancer disease on the dielectric relaxation frequency of the water molecules in suspensions and erythrocyte ghosts in diapason of ultrahigh frequencies (UHF).
Methods. The study of dielectric relaxation frequency of the water molecules in solutions of erythrocytes and erythrocyte ghosts was carried out with the method of measurements of an actual (ε′) and imaginary (ε′′) parts of complex dielectric permeability. The value of dielectric constant ε′ was defined by the measurement of the resonance frequency (Δf) of resonator with pattern relative to an empty resonator and the value ε′′ - by the value of damping of power of UHF field as a result of introduction of dielectric in resonator.
Results. There were received the temperature dependencies of dielectric permeability for suspensions and erythrocyte ghosts in donors and cancer patients. In suspension of donor erythrocytes in temperature area 6-12, 17-40 and 43-46 °С and in suspension of erythrocytes of patients at temperatures 9-18, 23-37 and 43-46°С, it were observed the deviation of dielectric indicators from the monotonous growth that was attended by the reliable growth of the dielectric relaxation frequency fd of the water molecules in suspension of patient erythrocytes compared with the dielectric relaxation frequency fd of the water molecules in suspension of donor erythrocytes. There were calculated the values of energy of time activation of dielectric relaxation of the water molecules in given systems.
Conclusions. It was detected the growth of the dielectric relaxation frequency of the water molecules in suspension of erythrocytes of cancer patients in temperature interval 1-46 °С compared to the dielectric relaxation frequency of the water molecules in suspension of erythrocytes of the healthy donors. It was revealed that in temperature diapason 6-12 °С, 43-46 °С in suspension of donor erythrocytes and in temperature diapason 9-18 °С, 23-37 °С, 43-46 °С in suspension of erythrocytes of cancer patients take place the changes of the state of water that leads to loosening of the structure of lipid biolayer of membrane.
Références
Cancer in Ukraine, 2013-2014. Bulletin of national cancer registry of Ukraine (english) (2015). Ukrainian cancer registry statistics, 16.
Bolis, L. S., Hoffman, D. F., Lif, A. (1980). Membranu i bolezn' [Membranu i bolezn']. Moscow: Мedicine, 408.
Morariu, V. V., Benga, G. (1984). Water diffusion through erythrocyte membranes in normal and pathological subjects: nuclear magnetic resonance investigations. Membrane processes, 121–139. doi: 10.1007/978-1-4613-8274-4
Komarov, F. I., Korovkin, B. F., Menshikov, V. V. (1981). Biohimicheskie issledovaniya v klinike [Biohimicheskie issledovaniya v klinike]. Lviv: Мedicine, 406.
Schwan, H. P. (1981). Electrical Properties of Cells: Principles, Some Recent Results, and Some Unresolved Problems. The Biophysical Approach to Excitable Systems, 3–24. doi: 10.1007/978-1-4613-3297-8_1
Grshcenko, V. I., Magidov, S. H., Moiseev, V. A., Nadrid, O. A. (1995). Vlijanie temperatyru i consentrasij razlichnux veschestv na mikrovjazkost' citozolja jeritrocitov. Biofizika, 40 (1), 106–109.
Verbavatz, J. M., Brown, D., Sabolic, I. (1993). Tetrameric assembly of CHIP28 water channels in liposomes and cell membranes: a freeze-fracture study. The Journal of Cell Biology, 123 (3), 605–618. doi: 10.1083/jcb.123.3.605
Antonchenko, V. Ya. (1983). Mikroskopicheskaya teoriya vody [Mikroskopicheskaya teoriya vody]. Naukova dumka, 160.
Becker, F. F., Wang, X. B., Huang, Y., Pethig, R., Vykoukal, J., Gascoyne, P. R. (1995). Separation of human breast cancer cells from blood by differential dielectric affinity. Proceedings of the National Academy of Sciences, 92 (3), 860–864. doi: 10.1073/pnas.92.3.860
Guravlev, A. K., Myrahko, V. V. (1984). Membranu jeritrocitov pri zlokachestvennom roste. Bulletin of Experimental Biology and Medicine, 98 (11), 596–598.
Chelidze, T. (2002). Dielectric spectroscopy of blood. Journal of Non-Crystalline Solids, 305 (1–3), 285–294. doi: 10.1016/s0022-3093(02)01101-8
Bothwell, T. P., Schwan, H. P. (1956). Electrical Properties of the Plasma Membrane of Erythrocytes at Low Frequencies. Nature, 178 (4527), 265–266. doi: 10.1038/178265b0
Asami, K. (2006). Dielectric dispersion of erythrocyte ghosts. Physical Review E, 73 (5), 052903–052905. doi: 10.1103/physreve.73.052903
Kotb, M. A., Ramadan, H. S. (2014). Dielectric properties of red blood corpuscles of workers chronically exposed to benzene in workplace. European Scientific Journal June, 10 (18), 365–378.
Solov'ev, D. V., Gorobchenko, T. A., Shatalova, T. A. et al. (2011). Dijelektricheskaja pronicaemost' jeritrocitov krolej na chastote 9,2 GGc pri diabete 2 tipa i primenenii saharosnizhajushhih sredstv. Bіofіzichnij vіsnik, 27 (2), 40–49.
Zhiljakova, T. A. (1991). Temperaturozavisimye izmenenija sostojanija vody v biologicheskih membranah po dannym metodov JaMR i SVCh-dijelektrometrii. Kharkiv, 170.
Cleary, S. F., Liu, L. M. (1988). Radiofrequency/Microwave Cell Absorption and Action Spectroscopy. Technical Report, 15.
Mamotyuk, E. M., Batyuk, L. V., Leonova, I. A., Yrazova, V. I. (2003). Issledovaniya termoystoichivosti fraksij jeritrocitov v norme i pri patologii. III Congress on radiation research (radiobiology and radioecology). Kiev, 235.
Batyuk, L. V., Gatash, S. V., Tovstiak, V. V. (2004). Influence of temperature of the aggregation of erythrocytes in patients with malignant neoplasms. Abstracts of Ukrainian Society of Cell Biology. Lviv, 66.
Batyuk, L. V. (2004). The analysis of acid hemolysis parameters and erythrocyte thermal resistance at radiation therapy of malignant tumors. Ukrainian Journal of Radiology, 12 (4), 135–141.
Borisova, A. G., Olejnik, E. K. (2001). Analiz izmenenij termorezistentnosti jeritrocitov pri rake legkogo. Klinicheskaja laboratornaja diagnostika, 5, 14–16.
Gasan, A. I., Kashpyr, V. A., Maleev, V. Ja. (1994). Termicheskie perestroiki sivorotochnogo albumina. Biofizika, 39 (2), 588–593.
Haggis, G. H., Hasted, J. B., Buchan, T. J. (1952). The dielectric properties of water in solutions. Journal of Chemical Physics, 20 (9), 1453–1456.
Frelih, G. (1960). Teorija dijelektrikov [Teorija dijelektrikov]. Мoscow: Izd-vo IL, 251.
Cook, H. F. (1951). Dielectric Behaviour of Human Blood at Microwave Frequencies. Nature, 168 (4267), 247–248. doi: 10.1038/168247a0
Tiffert, T., Lew, V. L., Ginsburg, H., Krugliak, M., Croisille, L., Mohandas, N. (2005). The hydration state of human red blood cells and their susceptibility to invasion by Plasmodium falciparum. Blood, 105 (12), 4853–4860. doi: 10.1182/blood-2004-12-4948
Dix, J. A., Solomon, A. K. (1984). Role of membrane proteins and lipids in water diffusion across red cell membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes, 773 (2), 219–230. doi: 10.1016/0005-2736(84)90085-3
Schwan, H. P., Carstensen, E. L. (1957). Dielectric Properties of the Membrane of Lysed Erythrocytes. Science, 125 (3255), 985–986. doi: 10.1126/science.125.3255.985
Batyuk, L. V., Gatash, S. V., Gorobchenko, O. T., Nikolov, O. T. (2002). Dielectric properties of human erythrocytes in normal and carcinogenic state. Bіofіzichnij vіsnik, 1 (10(560)), 54–57.
Nikolov, O. T., Zhiljakova, T. A. (1991). Izmerenie kompleksnoj dijelektricheskoj pronicaemosti zhidkih dijelektrikov s bol'shimi poterjami. Zh. fiz. Him, 65 (5), 1312–1316.
Hackl, E. V., Gatash, S. V., Nikolov, O. T. (2005). Using UHF-dielectrometry to study protein structural transitions. Journal of Biochemical and Biophysical Methods, 63 (2), 137–148. doi: 10.1016/j.jbbm.2005.04.002
Glesston, S., Leder, L. B., Eiring, G. (1948). Teorija absoljutnux skorostej reaksij. Мoscow: IIL, 584.
Baeva, E. V. (1979). Insulin deponirujashaja funkcija pri rake molochnoi gelezu, 1 (1), 69–70.
Hyshiktuev, B. S., Hyshiktueva, N. A., Ivanov, V. N. et al. (1994). The fatty acid composition of lipids of blood plasma and red blood cells in patients with lung cancer. Probl. Med. Chemistry, 40 (5), 48–50.
Berezhnaya, N. M. (2009). Role of immune system cells in tumor microenvironment. Cells and cytokines – the components of inflammation. Oncology, 11 (1), 6–17.
Berezhnaya, N. M., Chekhun, V. F. (2005). Immunology of tumor growth [Immunology of tumor growth]. Naukova dumka, 792.
Blyum, N. E., Antonov, A. P., Asadullina, R. R. et. al. (2006). Osobennosti citikinovogo balanca pri hronocheskoj obstryktivnoj bolezni legkix. Roc.med. zurnal, 14 (22), 34–39.
Tan, T.-T., Coussens, L. M. (2007). Humoral immunity, inflammation and cancer. Current Opinion in Immunology, 19 (2), 209–216. doi: 10.1016/j.coi.2007.01.001
Gordon, E. (1979). The Organic Chemistry of Electrolyte Solutions. Мoscow: Mir, 712.
Potapov, A. A. (1993). Dielectric properties of water and proton activation mechanism of polarization. Zurnal obsej himii, 63 (7), 1461–1471.
Sorokina, Z. A. (1978). Sostojanie kalija, natrija i vodu v citoplazme kletok [Sostojanie kalija, natrija i vodu v citoplazme kletok]. Naukova dumka, 212.
Bjerrum, P. J., Tunnicliff, G. (1989). The Red Cell Membrane: A Model for Solute Transport. The human Press Inc., 465.
Téléchargements
Publié-e
Numéro
Rubrique
Licence
(c) Tous droits réservés Liliya Batyuk 2015
Cette œuvre est sous licence Creative Commons Attribution 4.0 International.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.