In silico approaches for rational design of potential anticonvulsants among 5-substituted 2-(R-amino)-1,3,4-thiadiazoles

Authors

  • Ліна Олексіївна Перехода National University of Pharmacy 53 Pushkinskaya str., Kharkiv, Ukraine, 61002, Ukraine
  • Ірина Володимирівна Драпак Danylo Halytsky Lviv National Medical University 69 Pekarska str., Lviv, Ukraine, 79010, Ukraine
  • Ігор Володимирович Сич National University of Pharmacy 53 Pushkinskaya str., Kharkiv, Ukraine, 61002, Ukraine
  • Тетяна Олександрівна Цапко National University of Pharmacy 53 Pushkinskaya str., Kharkiv, Ukraine, 61002, Ukraine

DOI:

https://doi.org/10.15587/2313-8416.2016.61078

Keywords:

"structure – activity" quantitative dependence, molecular descriptors, 1, 3, 4-thiadiazole derivatives, anticonvulsant activity

Abstract

Modern approaches to rational design of remedies, particularly, anticonvulsants as well, must include the use of computer analysis methods of correlations, in particular, (Q)SAR-analysis. Therefore, a series of promising anticonvulsants among 5-substituted 2-(r-amino)-1,3,4-thiadiazoles to detect the main descriptors, influencing activity, and obtained QSAR-models, which can be used in the targeted search of promising anticonvulsants, have been used by us.

Aim. The aim of the given manuscript was to detect correlations and to form on their basis recommendations concerning the rational design of anticonvulsant agents among 5-substituted 2-(r-amino)-1,3,4-thiadiazoles.

Methods. Hyper-Chem 7.5 and BuіldQSAR Software were used to calculate molecular descriptors and QSAR-models construction.

Results. The regression analysis with the use of experimentally determined parameters of the severity of seizures, duration of seizures, latency period and the percentage of animals survived as dependent variables, and calculated 3D descriptors of compounds’ molecules as independent variables has been carried out for detection of the informative molecular descriptors, showing most adequately the features of molecules, responsible for the manifestation of the anticonvulsant activity. The calculation of the mathematical multiparameter QSAR-models has been carried out for this purpose. It has been shown, that anticonvulsant activity of the analyzed substances depends on the energy values of limit molecular orbitals and octanol-water partition coefficient logP, and besides, the severity of seizures decreases and latency period increases with both lipophility values and molecule’s volume increasing. The increase of polarizability has negative impact on the anticonvulsant activity of the synthesized compounds. The duration of seizures and animal survival time are reduced with decreasing of ЕНВМОvalue, i.e. with increasing of quantities of negative energy values of the lower vacant molecular orbital, which corresponds to strengthening of electron properties of compounds.

Conclusion. A statistically significant number of QSAR-models intended for the pre-experimental prediction of the effective anticonvulsants with prescribed set of properties of 1,3,4-thiadiazole derivatives. The most important descriptors in "structure - activity" dependence, i.e. lipophility, energy values of the lower vacant molecular orbital and molecular volume, have been determined by regression analysis for the given group of substances

Author Biographies

Ліна Олексіївна Перехода, National University of Pharmacy 53 Pushkinskaya str., Kharkiv, Ukraine, 61002

Doctor of Pharmacy, professor

Medicinal chemistry department

Ірина Володимирівна Драпак, Danylo Halytsky Lviv National Medical University 69 Pekarska str., Lviv, Ukraine, 79010

PhD in Pharmacy, associated professor

Department of general, bioinorganic, physical and colloidal chemistry

Ігор Володимирович Сич, National University of Pharmacy 53 Pushkinskaya str., Kharkiv, Ukraine, 61002

Medicinal chemistry department

Тетяна Олександрівна Цапко, National University of Pharmacy 53 Pushkinskaya str., Kharkiv, Ukraine, 61002

PhD in Pharmacy, associated professor

Medicinal chemistry department

References

Tetko, I. V., Gasteiger, J., Todeschini, R., Mauri, A., Livingstone, D., Ertl, P. et. al (2005). Virtual Computational Chemistry Laboratory – Design and Description. Journal of Computer-Aided Molecular Design, 19 (6), 453–463. doi: 10.1007/s10822-005-8694-y

Perekhoda, L. O., Georgiyants, V. A., Ribalchеnkо, Т. L., Plys, S. V. (2009). Protysudomna aktyvnist dymetylovykh esteriv 1-aryl-1,2,3-triazol(1H)-4,5-dykarbonovykh kyslot ta yii zalezhnist vid molekuliarnoi budovy [Anticonvulsant activity of methyl esters of 1-aryl-1,2,3-triazoles (1H) -4,5-dicarboxylic acid and its dependence on molecular structure]. Clin. pharm., 13 (3), 67–70.

Perekhoda, L. O., Severina, H. I., Georgiyants, V. A., Hrynenko V. V. (2011). Farmakolohichni vlastyvosti triazolopirymidynu ta kil'kisni spivvidnoshennya «struktura–protysudomna aktyvnist'» [Pharmacological properties of derivatives tryazolopirimidines and quantitative ratio «structure-anticonvulsant activity»]. Med. chem., 13 (2), 79–83.

Perekhoda, L. O., Georgiyants, V. A. (2011). Vyznachennia koreliatsii «struktura–protysudomna aktyvnist» v riadu pokhidnykh 1-aryl-4-R-5-metyl(amino)-1,2,3-triazolu(1H) [Definition of correlation «structure–anticonvulsant activity» of the derivatives of 1-aryl-4-R-5-methyl(amino)-1,2,3-tryazol(1Н)]. Clin. Inform. Telemed., 8, 93–97.

Perekhoda, L. O. (2012). QSAR-analiz pokhidnykh 1,2,3-triazolu(1H), shcho proiavliaiut protysudomnu aktyvnist [QSAR-analysis of l,2,3-triazol(1Н) derivatives revealing the anticonvulsant activity]. News of pharmacy, 1 (69), 54–56.

Perekhoda, L. O. (2013). Kolychestvennoe yssledovanye vzaymosviazy «struktura – protyvosudorozhnaia aktyvnost» v riadakh proyzvodnykh 1,2,3-tryazola(1H), 1,2,4-tryazola(4H), 1,3,4-oksadyazola(1H) i 1,3,4-tyadyazola(1H) [Quantitative study of «structure – anticonvulsant activity» relationship in series of 1,2,3-triazole (1H), 1,2,4-triazole (4H), 1,3,4-oxadiazole (1H) and 1,3,4 thiadiazol (1H)]. Pharm. Chem. J., 47 (11), 42–44.

Sych, I. V., Perekhoda, L. A., Tsapko, T. O. (2015). Synthesis of 5-substituted 1,3,4-thiadiazol-2-yl-sulfanylacetic acid derivatives. Scripta Scientifica Pharmaceutica, 2 (2), 53–59. doi: 10.14748/ssp.v2i2.1404

Sych, I. V., Perekhoda, L. A., Erjomina, Z. G. (2015). Syntez, fizyko-khimichni vlastyvosti ta prohnoz biolohichnoyi aktyvnosti novykh pokhidnykh 2-R1-N-(5-R)-1,3,4-tiadiazol-2-il-benzolsul'fonamidiv [Synthesis, physicochemical properties and prediction of biological activity of new derivatives of 2-R1-N-(5-R)-1,3,4-thiadiazol-2-yl-benzensulfonic acid amides]. Annals of Mechnikov institute, 4, 75‑81. Available at: http://nbuv.gov.ua/UJRN/ami_2015_4_12

Todeschini, R., Consonni, V. (Eds.) (2009). Molecular Descriptors for Chemoinformatic. Weinheim: Wiley-VCH, 1257. doi: 10.1002/9783527628766

HyperCube, Inc.: Hyperchem software. Available at: http://www.hyper.com

Lipinski, C. A., Lombardo, F., Dominy, B. W., Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23 (1-3), 3–25. doi: 10.1016/s0169-409x(96)00423-1

De Olivera, D. B., Gaudio, A. C. (2000). BuildQSAR: A new computer program for QSAR analysis. Quantitative Structure-Activity Relationships, 19 (6), 599–601. doi: 10.1002/1521-3838(200012)19:6<599::aid-qsar599>3.0.co;2-b

Habibi-Yangjeh, A., Pourbasheer, E., Danandeh-Jenagharad, M. (2008). Prediction of basicity constants of various pyridines in aqueous solution using a principal component-genetic algorithm-artificial neural network. Monatshefte für Chemie – Chemical Monthly, 139 (12), 1423–1431. doi: 10.1007/s00706-008-0951-z

Published

2016-03-15

Issue

Section

Pharmaceutical Sciences