Recognition of the reference signals at interference generation and loss at random times

Authors

DOI:

https://doi.org/10.15587/2313-8416.2016.64500

Keywords:

signal recognition, disproportionate features, additive interference, random interference, pulse, signal fragment

Abstract

This article describes the reference of the signal recognition method, which is superimposed on the random additive interference. References, in turn, can be various types of pulses, which makes impossible the calculation of their derivatives in some times. Also, reference includes in the analyzed signal with a certain advance unknown scale factor. The proposed method allows determining a fragment of the references included in the analyzed signal at random time

Author Biographies

Виктор Васильевич Авраменко, Sumy State University 2 Rimskogo-Korsakova str., Sumy, Ukraine, 40007

PhD, Associate Professor

Department of Computer Sciences

Антон Евгеньевич Коноплянченко, Sumy State University 2 Rimskogo-Korsakova str., Sumy, Ukraine, 40007

Department of Computer Sciences

Юрий Иванович Прохненко, Sumy State University 2 Rimskogo-Korsakova str., Sumy, Ukraine, 40007

Department of Computer Sciences

References

Bezruk, V. M., Lebedev, O. G. (2012). Recognition of predetermined signals in the automated radio monitoring problems. Eastern-European journal of enterprise technologies, 5/9 (59), 47–50. Available at: http://journals.uran.ua/eejet/article/view/4628/4283

Deglina, Ju. B. (2006). Nejrosetevoj algoritm raspoznavanija signalov akusticheskoj jemissii. Shtuchnij іntelekt, 4, 731–734. Available at: http://iai.dn.ua/public/JournalAI_2006_4/Razdel8/13_Deglina.pdf

Spravochnaja sistema po moduljam Digispot II. Available at: http://redmine.digispot.ru/projects/digispot/wiki/WikiStart

Barhatov, V. A. Obnaruzhenie signalov i ih klassifikacija s pomoshh'ju raspoznavanija obrazov. IC Fizpribor. Available at: http://fpribor.ru/uploadedFiles/files/Patern_Recognition_1.pdf

Danilov, V. N. (2007). K ocenke jehosignalov ot dvugrannyh uglov v obrazcah s cilindricheskimi poverhnostjami. Defektoskopija, 7, 35–42.

Zaprjagaev, S. A., Konovalov, A. Ju. (2009). Raspoznavanija rechevyh signalov. Vestnik VGU, Serija: sistemnyj analiz i informacionnye tehnologii, 2, 39–48. Available at: http://www.vestnik.vsu.ru/pdf/analiz/2009/02/2009-02-08.pdf

Mehra, P. (1992). Artifical Neural Networks: Concepts and Theory. IEEE Computer Society Press, 680.

Osovskij, S. (2004). Nejronnye seti dlja obrabotki informaci. Moscow: Finansy i statistika, 344.

Avramenko, V. V., Slepushko, N. Ju. (2009). Raspoznavanie jetalonnyh signalov pri nepolnoj informacii o harakteristikah pomeh. Vestnik SumGU. Tehnicheskie nauki, 3, 13–19.

Avramenko, V. V., Karpenko, A. P. (2002). Raspoznavanie fragmentov zadannyh jetalonov v analiziruemom signale s pomoshh'ju funkcij neproporcional'nosti. Vіsnik Sums'kogo derzhavnogo unіversitetu, 1 (34), 96.

Published

2016-03-27

Issue

Section

Technical Sciences