Наноэлектроника «снизу – вверх»: возникновение тока, обобщенный закон ома, упругий резистор, моды проводимости, термоэлектричество
DOI :
https://doi.org/10.15587/2313-8416.2015.45700Mots-clés :
наноэлектроника, упругий резистор, моды проводимости, обобщенный закон Ома, графен, термоэлектрикиRésumé
В рамках концепции «снизу – вверх» современной наноэлектроники рассматриваются общие вопросы электронной проводимости, причины возникновения тока и роль электрохимических потенциалов и фермиевских функций, модель упругого резистора, баллистический и диффузионный транспорт, моды проводимости, проводники n- и p-типа, а также графен и дается новая обобщенная формулировка закона Ома. Далее рассматриваются термоэлектрические явления Зеебека и Пельтье, показатели качества и оптимизация термоэлектриков, баллистический и диффузионный транспорт фононов и его роль в теплопроводности
Références
Mitin, V. V., Kochelap, V. A., Stroscio, M. A. (2012). Introduction to Nanoelectronics: Science, Nanotechnology, Engineering, and Applications. Cambridge: Cambridge University Press, 346.
Hoefflinger, B. (2012). Chips 2020: A Guide to the Future of Nanoelectronics (Frontiers Collection). Berlin: Springer-Verlag, 505.
Martines-Duart, Dzh. M., Martin-Palma, R. Dzh., Agullo-Rueda, F. (2007). Nanotehnologii dlia mikro- i optoelektroniki. Moskva: Tehnosfera, 368.
Dragunov, V. P., Neizvestnyi, I. G., Gridchin, V. A. (2006). Osnovy nanoelektroniki. Moscow: Logos, 496.
Network for Computational Nanotechnology. Available at: http://nanohub.org/
Smit, R. H. M., Noat, Y., Untiedt, C., Lang, N. D., van Hemert, M. C., van Ruitenbeek, J. M. (2002). Measurement of the conductance of a hydrogen molecule. Nature, 419 (6910), 906–909. doi: 10.1038/nature01103
Supriyo, D. (2001). Electronic Transport in Mesoscopic Systems. Cambridge: Cambridge University Press, 377.
Supriyo, D. (2005). Quantum Transport: Atom to Transistor. Cambridge: Cambridge University Press, 404.
Electronics from the Bottom Up:A New Approach to Nanoelectronic Devices. Available at: http://nanohub.org/topics/ElectronicsFromTheBottomUp
Supriyo, D. (2012). Lessons from Nanoelectronics: A New Perspective on Transport. Hackensack, New Jersey: World Scientific Publishing Company, 473. Available at: http://nanohub.org/courses/FoN1
Lundstrom, M., Jeong, C. (2013). Near-Equilibrium Transport: Fundamentals and Applications. Hackensack, New Jersey: World Scientific Publishing Company. Available at: https://nanohub.org/resources/11763
Landauer, R. (1957). Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction. IBM Journal of Research and Development, 1 (3), 223–231. doi: 10.1147/rd.13.0223
Landauer, R. (1970). Electrical resistance of disordered one-dimensional lattices. Philosophical Magazine, 21 (172), 863–867. doi: 10.1080/14786437008238472
Landauer, R. (1996). Spatial variation of currents and fields due to localized scatterers in metallic conduction (and comment). Journal of Mathematical Physics, 37 (10), 5259. doi: 10.1063/1.531590
Ashkroft, N., Mermin, N. (1979). Fizika tverdogo tela. Vol. 1. Moscow: Mir, 400.
Sears, F. W., Salinger, G. L. (1975). Thermodynamics, Kinetic Theory, and Statistical Thermodynamics. Boston: Addison-Wesley, 331–336; 355–361.
Kubo, R. (1957). Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. Journal of the Physical Society of Japan, 12 (6), 570–586. doi: 10.1143/jpsj.12.570
Krugliak, Iu. O., Krugliak, N. Iu., Strіha, M. V. (2012). Uroki nanoelektronіki: Viniknennia strumu, formuliuvannia zakonu Oma і modi provіdnostі v kontseptsії «znizu–vgoru». Sensor. elektr. mіkrosist. tehn, 9 (4), 5–29.
Krugliak, Iu. A. (2014). Obobshchennaia model' transporta elektronov i tepla Landauera-Datty-Lundstroma v mikro- i nanoelektronike. ScienceRise, 5/3 (5), 21–38. doi: 10.15587/2313-8416.2014.30728
Lundstrom, M., Guo, J. (2006). Nanoscale Transistors: Physics, Modeling, and Simulation. Berlin: Springer, 300.
Nazarov, Y. V., Blanter, Y. M. (2009). Quantum Transport. Introduction to nanoscience. Cambridge: Cambridge University Press, 590.
Berg, H. C. (1993). Random walks in biology. Princeton: Princeton University Press, 152.
Krugliak, Iu. A. (2015). Uchet rasseianiia v transportnoi modeli Landauera-Datty-Lundstroma. ScienceRise, 3/2 (8), 99–107. doi: 10.15587/2313-8416.2015.38847
Striha, M. V. (2010). Fizyka grafenu: stan i perspektyvy. Sensor. elektr. mikrosyst. tehn., 7 (3), 5–13.
Krugliak, Iu. A., Krugliak, N. E. (2012). Metodicheskie aspekty rascheta zonnoi struktury grafena s uchetom σ–ostova. Teoreticheskie osnovy. Vіsnik Odes'kogo derzh. ekolog. un-tu., 13, 207–218.
Bolotin, K. I., Sikes, K. J., Hone, J., Stormer, H. L., Kim, P. (2008). Temperature-Dependent Transport in Suspended Graphene. Physical Review Letters, 101 (9). doi: 10.1103/physrevlett.101.096802
Baheti, K., Malen, J. A., Doak, P., Reddy, P., Jang, S.-Y., Tilley, T. D., Segalman, R. A. (2008). Probing the Chemistry of Molecular Heterojunctions Using Thermoelectricity. Nano Lett., 8 (2), 715–719. doi: 10.1021/nl072738l
Anatychuk, L. I. (1979). Termoelementy i termoelektricheskie ustroistva. Kiev: Naukova dumka, 768.
Onsager, L. (1931). Reciprocal Relations in Irreversible Processes I. Physical Review, 37 (4), 405–426. doi: 10.1103/physrev.37.405
Hopkins, P. E., Duda, J. C., Norris, P. M. (2011). Anharmonic Phonon Interactions at Interfaces and Contributions to Thermal Boundary Conductance. Journal of Heat Transfer, 133 (6), 062401. doi: 10.1115/1.4003549
Chen, G. (1998). Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Physical Review B, 57 (23), 14958–14973. doi: 10.1103/physrevb.57.14958
Chiu, H.-Y., Deshpande, V. V., Postma, H. W. C., Lau, C. N., Mikó, C., Forró, L., Bockrath, M. (2005). Ballistic Phonon Thermal Transport in Multiwalled Carbon Nanotubes. Physical Review Letters, 95 (22). doi: 10.1103/physrevlett.95.226101
Zuckerman, N., Lukes, J. R. (2007). Atomistic Visualization of ballistic phonon transport. ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference, 2, 825–833. doi: 10.1115/ht2007-32674
Nolas, G. S., Morelli, D. T., Tritt, T. M. (1999). Skutterudites: A Phonon-Glass-Electron Crystal Approach to Advanced Thermoelectric Energy Conversion Applications. Annual Review of Materials Science, 29 (1), 89–116. doi: 10.1146/annurev.matsci.29.1.89
Min, G., Rowe, D. M. (1999). A serious limitation to the phonon glass electron crystal (PGEC) approach to improved thermoelectric materials. J. Mater. Sci. Lett, 18 (16), 1305–1306.
Nanohub group (2012). Available at: https://nanohub.org/groups/u
PurdueX (2015). Available at: https://www.edx.org/school/purduex
Téléchargements
Publié-e
Numéro
Rubrique
Licence
(c) Tous droits réservés Юрій Олексійович Кругляк 2015
Cette œuvre est sous licence Creative Commons Attribution 4.0 International.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.