Наноэлектроника «снизу – вверх»: возникновение тока, обобщенный закон ома, упругий резистор, моды проводимости, термоэлектричество

Авторы

  • Юрій Олексійович Кругляк Одесский государственный экологический университет ул. Львовская, 15, Одесса, Украина, 65016, Ukraine

DOI:

https://doi.org/10.15587/2313-8416.2015.45700

Ключевые слова:

наноэлектроника, упругий резистор, моды проводимости, обобщенный закон Ома, графен, термоэлектрики

Аннотация

В рамках концепции «снизу – вверх» современной наноэлектроники рассматриваются общие вопросы электронной проводимости, причины возникновения тока и роль электрохимических потенциалов и фермиевских функций, модель упругого резистора, баллистический и диффузионный транспорт, моды проводимости, проводники n- и p-типа, а также графен и дается новая обобщенная формулировка закона Ома. Далее рассматриваются термоэлектрические явления Зеебека и Пельтье, показатели качества и оптимизация термоэлектриков, баллистический и диффузионный транспорт фононов и его роль в теплопроводности

Биография автора

Юрій Олексійович Кругляк, Одесский государственный экологический университет ул. Львовская, 15, Одесса, Украина, 65016

Доктор химических наук, профессор

Кафедра информационных технологий

Библиографические ссылки

Mitin, V. V., Kochelap, V. A., Stroscio, M. A. (2012). Introduction to Nanoelectronics: Science, Nanotechnology, Engineering, and Applications. Cambridge: Cambridge University Press, 346.

Hoefflinger, B. (2012). Chips 2020: A Guide to the Future of Nanoelectronics (Frontiers Collection). Berlin: Springer-Verlag, 505.

Martines-Duart, Dzh. M., Martin-Palma, R. Dzh., Agullo-Rueda, F. (2007). Nanotehnologii dlia mikro- i optoelektroniki. Moskva: Tehnosfera, 368.

Dragunov, V. P., Neizvestnyi, I. G., Gridchin, V. A. (2006). Osnovy nanoelektroniki. Moscow: Logos, 496.

Network for Computational Nanotechnology. Available at: http://nanohub.org/

Smit, R. H. M., Noat, Y., Untiedt, C., Lang, N. D., van Hemert, M. C., van Ruitenbeek, J. M. (2002). Measurement of the conductance of a hydrogen molecule. Nature, 419 (6910), 906–909. doi: 10.1038/nature01103

Supriyo, D. (2001). Electronic Transport in Mesoscopic Systems. Cambridge: Cambridge University Press, 377.

Supriyo, D. (2005). Quantum Transport: Atom to Transistor. Cambridge: Cambridge University Press, 404.

Electronics from the Bottom Up:A New Approach to Nanoelectronic Devices. Available at: http://nanohub.org/topics/ElectronicsFromTheBottomUp

Supriyo, D. (2012). Lessons from Nanoelectronics: A New Perspective on Transport. Hackensack, New Jersey: World Scientific Publishing Company, 473. Available at: http://nanohub.org/courses/FoN1

Lundstrom, M., Jeong, C. (2013). Near-Equilibrium Transport: Fundamentals and Applications. Hackensack, New Jersey: World Scientific Publishing Company. Available at: https://nanohub.org/resources/11763

Landauer, R. (1957). Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction. IBM Journal of Research and Development, 1 (3), 223–231. doi: 10.1147/rd.13.0223

Landauer, R. (1970). Electrical resistance of disordered one-dimensional lattices. Philosophical Magazine, 21 (172), 863–867. doi: 10.1080/14786437008238472

Landauer, R. (1996). Spatial variation of currents and fields due to localized scatterers in metallic conduction (and comment). Journal of Mathematical Physics, 37 (10), 5259. doi: 10.1063/1.531590

Ashkroft, N., Mermin, N. (1979). Fizika tverdogo tela. Vol. 1. Moscow: Mir, 400.

Sears, F. W., Salinger, G. L. (1975). Thermodynamics, Kinetic Theory, and Statistical Thermodynamics. Boston: Addison-Wesley, 331–336; 355–361.

Kubo, R. (1957). Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. Journal of the Physical Society of Japan, 12 (6), 570–586. doi: 10.1143/jpsj.12.570

Krugliak, Iu. O., Krugliak, N. Iu., Strіha, M. V. (2012). Uroki nanoelektronіki: Viniknennia strumu, formuliuvannia zakonu Oma і modi provіdnostі v kontseptsії «znizu–vgoru». Sensor. elektr. mіkrosist. tehn, 9 (4), 5–29.

Krugliak, Iu. A. (2014). Obobshchennaia model' transporta elektronov i tepla Landauera-Datty-Lundstroma v mikro- i nanoelektronike. ScienceRise, 5/3 (5), 21–38. doi: 10.15587/2313-8416.2014.30728

Lundstrom, M., Guo, J. (2006). Nanoscale Transistors: Physics, Modeling, and Simulation. Berlin: Springer, 300.

Nazarov, Y. V., Blanter, Y. M. (2009). Quantum Transport. Introduction to nanoscience. Cambridge: Cambridge University Press, 590.

Berg, H. C. (1993). Random walks in biology. Princeton: Princeton University Press, 152.

Krugliak, Iu. A. (2015). Uchet rasseianiia v transportnoi modeli Landauera-Datty-Lundstroma. ScienceRise, 3/2 (8), 99–107. doi: 10.15587/2313-8416.2015.38847

Striha, M. V. (2010). Fizyka grafenu: stan i perspektyvy. Sensor. elektr. mikrosyst. tehn., 7 (3), 5–13.

Krugliak, Iu. A., Krugliak, N. E. (2012). Metodicheskie aspekty rascheta zonnoi struktury grafena s uchetom σ–ostova. Teoreticheskie osnovy. Vіsnik Odes'kogo derzh. ekolog. un-tu., 13, 207–218.

Bolotin, K. I., Sikes, K. J., Hone, J., Stormer, H. L., Kim, P. (2008). Temperature-Dependent Transport in Suspended Graphene. Physical Review Letters, 101 (9). doi: 10.1103/physrevlett.101.096802

Baheti, K., Malen, J. A., Doak, P., Reddy, P., Jang, S.-Y., Tilley, T. D., Segalman, R. A. (2008). Probing the Chemistry of Molecular Heterojunctions Using Thermoelectricity. Nano Lett., 8 (2), 715–719. doi: 10.1021/nl072738l

Anatychuk, L. I. (1979). Termoelementy i termoelektricheskie ustroistva. Kiev: Naukova dumka, 768.

Onsager, L. (1931). Reciprocal Relations in Irreversible Processes I. Physical Review, 37 (4), 405–426. doi: 10.1103/physrev.37.405

Hopkins, P. E., Duda, J. C., Norris, P. M. (2011). Anharmonic Phonon Interactions at Interfaces and Contributions to Thermal Boundary Conductance. Journal of Heat Transfer, 133 (6), 062401. doi: 10.1115/1.4003549

Chen, G. (1998). Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Physical Review B, 57 (23), 14958–14973. doi: 10.1103/physrevb.57.14958

Chiu, H.-Y., Deshpande, V. V., Postma, H. W. C., Lau, C. N., Mikó, C., Forró, L., Bockrath, M. (2005). Ballistic Phonon Thermal Transport in Multiwalled Carbon Nanotubes. Physical Review Letters, 95 (22). doi: 10.1103/physrevlett.95.226101

Zuckerman, N., Lukes, J. R. (2007). Atomistic Visualization of ballistic phonon transport. ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference, 2, 825–833. doi: 10.1115/ht2007-32674

Nolas, G. S., Morelli, D. T., Tritt, T. M. (1999). Skutterudites: A Phonon-Glass-Electron Crystal Approach to Advanced Thermoelectric Energy Conversion Applications. Annual Review of Materials Science, 29 (1), 89–116. doi: 10.1146/annurev.matsci.29.1.89

Min, G., Rowe, D. M. (1999). A serious limitation to the phonon glass electron crystal (PGEC) approach to improved thermoelectric materials. J. Mater. Sci. Lett, 18 (16), 1305–1306.

Nanohub group (2012). Available at: https://nanohub.org/groups/u

PurdueX (2015). Available at: https://www.edx.org/school/purduex

Загрузки

Опубликован

2015-07-26

Выпуск

Раздел

Физико-математические науки