Analysis of a semiconductor vibration and frequency sensor construction specifity
DOI:
https://doi.org/10.15587/2313-8416.2018.143414Ключевые слова:
semiconductor, filamentous monocrystal, tensotransducer, resonator, frequency, sensitive element, tensor signal, deformationАннотация
The model of direct transducering tensoresistive method of semiconductor filamentous monocrystal mechanical oscillations into an electrical signal and the principle of deformation into frequency transducer (sensor) construction are considered in this paper. The connections of output tensor signal parameters with resonator own geometric dimensions, mechanical stress and elasticity of the crystals, amplitude and their mechanical oscillations frequency are established. The value of tensor signal, which arises due to bending and tension of monocrystals under cyclic loads, is estimated, the specificity of their properties and structure is revealed
Библиографические ссылки
Langdon, R. M. (1985). Resonator sensors – a rewiew. Journal of Physics E: Scientific Instruments, 18 (2), 103–115. doi: https://doi.org/10.1088/0022-3735/18/2/002
Haueis, M., Dual, J., Cavalloni, C., Gnielka, M., Buser, R. A. (2000). Packaged bulk micromachined resonant force sensor for high-temperature applications. Design, Test, Integration, and Packaging of MEMS/MOEMS. doi: https://doi.org/10.1117/12.382278
Remtema, T., Lin, L. (2001). Active frequency tuning for micro resonators by localized thermal stressing effects. Sensors and Actuators A: Physical, 91 (3), 326–332. doi: https://doi.org/10.1016/s0924-4247(01)00603-3
Sviličić, B., Mastropaolo, E., Cheung, R. (2014). A MEMS Filter Based on Ring Resonator with Electrothermal Actuation and Piezoelectric Sensing. Procedia Engineering, 87, 1406–1409. doi: https://doi.org/10.1016/j.proeng.2014.11.706
Zhang, W.-M., Hu, K.-M., Peng, Z.-K., Meng, G. (2015). Tunable Micro- and Nanomechanical Resonators. Sensors, 15 (10), 26478–26566. doi: https://doi.org/10.3390/s151026478
Liu, H., Zhang, C., Weng, Z., Guo, Y., Wang, Z. (2017). Resonance Frequency Readout Circuit for a 900 MHz SAW Device. Sensors, 17 (9), 2131. doi: https://doi.org/10.3390/s17092131
Druzhinin, A., Maryamova, I., Kutrakov, A., Liakh-Kaguy, N. (2011). Silicon whiskers for sensor electronics. Materials of XIII International conference Physics and technology of thin films and nanosystems. Ivano-Frankivsk, 1, 29.
Druzhinin, A., Kutrakov, A., Maryamova, I. (2011). Tensoresistive pressure sensors based on filamentous silicon crystals for a wide range of temperatures. Bulletin of the Lviv Polytechnic National University. Electronics, 708, 64–71.
Rak, V., Baitsar, R. (2007). A random errors estimation of the measuring generator of the resonance sensors. Sensors and systems, 5, 16–21.
Baitsar, R., Rak, V., Zelisko, Y. (2011). A temperature and pressure influence on the output frequency of the measuring generator of the resonance sensor. Measuring equipment and metrology, 72, 88–93.
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2018 Roman Baitsar, Roman Kvit
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Наше издание использует положения об авторских правах Creative Commons CC BY для журналов открытого доступа.
Авторы, которые публикуются в этом журнале, соглашаются со следующими условиями:
1. Авторы оставляют за собой право на авторство своей работы и передают журналу право первой публикации этой работы на условиях лицензии Creative Commons CC BY, которая позволяет другим лицам свободно распространять опубликованную работу с обязательной ссылкой на авторов оригинальной работы и первую публикацию работы в этом журнале.
2. Авторы имеют право заключать самостоятельные дополнительные соглашения, которые касаются неэксклюзивного распространения работы в том виде, в котором она была опубликована этим журналом (например, размещать работу в электронном хранилище учреждения или публиковать в составе монографии), при условии сохранения ссылки на первую публикацию работы в этом журнале .