Активность протеасом в клетках поджелудочной железы при экспериментальном панкреатите
DOI:
https://doi.org/10.15587/2313-8416.2015.53177Ключевые слова:
протеасома, химотрипсиноподобная активность, трипсиноподобная активность, каспазоподобная активность, поджелудочная железа, панкреатитАннотация
Исследовано химотрипсино-, трипсино- и каспазоподобную протеасомальные активности в клетках поджелудочной железы и установлено их изменение при экспериментальном панкреатите – повышение химотрипсиноподобной АТФ-независимой активности на фоне снижения трипсиноподобной и каспазоподобной активностей. При этом, снижение трипсиноподобной активности происходило за счет АТФ-зависимого гидролиза, тогда как каспазоподобной – за счет АТФ-независимого гидролиза
Библиографические ссылки
Orlowski, M., Cardozo, C., Michaud, C. (1993). Evidence for the presence of five distinct proteolytic components in the pituitary multicatalytic proteinase complex. Properties of two components cleaving bonds on the carboxyl side of branched chain and small neutral amino acids. Biochemistry, 32 (6), 1563–1572. doi: 10.1021/bi00057a022
Dahlmann, B. (2007). Role of proteasomes in disease. BMC Biochemistry, 8, S3. doi: 10.1186/1471-2091-8-s1-s3
Ciechanover, A., Brundin, P. (2003). The ubiquitin proteasome system in neurodegenerative diseases. Neuron, 40 (2), 427–446. doi: 10.1016/s0896-6273(03)00606-8
Chen, C., Seth, A. K., Aplin, A. E. (2006). Genetic and Expression Aberrations of E3 Ubiquitin Ligases in Human Breast Cancer. Molecular Cancer Research, 4 (10), 695–707. doi: 10.1158/1541-7786.mcr-06-0182
Voutsadakis, I. A. (2008). The ubiquitin-proteasome system in colorectal cancer. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease, 1782 (12), 800–808. doi: 10.1016/j.bbadis.2008.06.007
Sharova, N., Zakharova, L. (2008). Multiple Forms of Proteasomes and their Role in Tumor Fate. Recent Patents on Endocrine, Metabolic & Immune Drug Discovery, 2 (3), 152–161. doi: 10.2174/187221408786241847
Banks, P. A., Freeman, M. L. (2006). Practice Guidelines in Acute Pancreatitis. The American Journal of Gastroenterology, 101 (10), 2379–2400. doi: 10.1111/j.1572-0241.2006.00856.x
Bhatia, M. (2004). Apoptosis of pancreatic acinar cells in acute pancreatitis: is it good or bad? Journal of Cellular and Molecular Medicine, 8 (3), 402–409. doi: 10.1111/j.1582-4934.2004.tb00330.x
Gukovskaya, A. S., Pandol, S. J. (2004). Cell death pathways in pancreatitis and pancreatic cancer. Pancreatology, 4 (6), 567–586. doi: 10.1159/000082182
Gukovskaya, A., Perkins, P., Zaninovic, V., Sandoval, D., Rutherford, R., Fitzsimmons, T., Pandol, S. J., Poucell-Hatton, S. (1996). Mechanisms of cell death after pancreatic duct obstruction in the opossum and the rat. Gastroenterology, 110 (3), 875–884. doi: 10.1053/gast.1996.v110.pm8608898
Hegyi, P., Rakonczay, Z. Jr., Sári, R., Góg, C., Lonovics, J., Takács, T., Czakó, L. (2004). L-arginine-induced experimental pancreatitis. World Journal of Gastroenterology, 10 (14), 2003–2009. doi: 10.3748/wjg.v10.i14.2003
Kirk, C. J., Powell, S. R., Miller, E. J. (2014). Assessment of cytokine-modulated proteasome activity. Methods in Molecular Biology, 1172, 147–162. doi: 10.1007/978-1-4939-0928-5_13
Bradford, M. (1976). A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry, 72 (1-2), 248–254. doi: 10.1006/abio.1976.9999
Stanton, G. (1998). Medicobiologicheskaya sytatistika [Biomedical Statistics]. Moscow: Praktika, 459.
Goralsky, L. P., Khomuch, V. T., Kononsky, O. I. (2005). Osnovy gistologichnoji tekchniky i morfo-funkcionalni metody doslidzhennya u normi ta pry patologii [Fundamentals of histological techniques and morphofunctional research methods in health and disease]. Zhitomyr: Polissya, 288.
Firsova, V. G., Parshikov, V. V. (2013). Destruktivnyi pankreatit: mekchanizmy gibeli kletki i ih vozmozhnoe klinicheskoe znachenie [Destructive pancreatitis: mechanisms of cell death and possible clinical importance]. Journal of Experimental and Clinical Surgery, 6 (1), 100–106.
Kisselev, A. F., Kaganovich, D., Goldberg, A. L. (2002). Binding of hydrophobic peptides to several non-catalytic sites promotes peptide hydrolysis by all active sites of 20 S proteasomes. Evidence for peptide-induced channel opening in the alpha-rings. Journal of Biological Chemistry, 277 (25), 22260–22270. doi: 10.1074/jbc.m112360200
Tcimoha, A. S. (2010). Proteasomy: uchastie v kletochnyh procesah [Proteasomes: participation in cellular processes]. Cytology, 52 (4), 277–300.
Fuchs, D., Berges, C., Opelz, G., Daniel, V., Naujokat, C. (2007). Increased expression and altered subunit composition of proteasomes induced by continuous proteasome inhibition establish apoptosis resistance and hyperproliferation of Burkitt lymphoma cells. Journal of Cellular Biochemistry, 103 (1), 270–283. doi: 10.1002/jcb.21405
Arlt, A., Bauer, I., Schafmayer, C., Tepel, J., Muerkoster, S. S., Brosch, M., Roder, C., Kalthoff, H., Hampe, J., Moyer, M. P., Folsch, U. R., Schafer, H. (2009). Increased proteasome subunit protein expression and proteasome activity in 62 colon cancer relate to an enhanced activation of nuclear factor E2-related factor 2 (Nrf2). Oncogene, 28 (45), 3983–3996. doi: 10.1038/onc.2009.264
Matsuama, Y., Suzuki, M., Arima, C., Huang, Q. M., Tomida, S., Takeuchi, T., Sugiyama, R., Itoh, Y., Yatabe, Y., Goto, H., Takahashi, T. (2011). Proteasomal non-catalytic subunit PSMD2 as a potential therapeutic target in association with various clinicopathologic features in lung adenocarcinomas. Molecular Carcinogenesis, 50 (4), 301–309. doi: 10.1002/mc.20632
Kisselev, A. F., Akopian, T. N., Castillo, V., Goldberg A. L. (1999). Proteasome active sites allosterically regulate each other, suggesting a cyclical bite-chew mechanism for protein breakdown. Molecular Cell, 4 (3), 395–402. doi: 10.1016/s1097-2765(00)80341-x
Rock, K. L., Goldberg, A. L. (1999). Degradation of cell proteins and the generation of MHC class I-presented peptides. Annual Review of Immunology, 17 (1), 739–779. doi: 10.1146/annurev.immunol.17.1.739
Kim, W. Y., Kaelin, W. G. (2004). The role of VHL mutation in human cancer. Journal of Clinical Oncology, 22 (24), 4991–5004. doi: 10.1200/jco.2004.05.061
Kudo, Y., Takata, T., Ogawa, I., Kaneda, T., Sato, S., Takekoshi, T., Zhao, M., Miyauchi, M., Nikai, H. (2000). p27Kip1 Accumulation by inhibition of proteasome function induces apoptosis in oral squamous cell carcinoma cells. Clin. Cancer Res., 6 (3), 916–923.
Tu, Y., Xu, J., Zhou, Z. G., Wang, C. Y. (2012). The ubiquitin proteasome pathway (UPP) in the regulation of cell cycle control and DNA damage repair and its implication in tumorigenesis. Int. J. Clin. Exp. Pathol., 5 (8), 726–738.
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2015 Мария Александровна Тимошенко, Олеся Вадимовна Сокур, Татьяна Владимировна Коваль, Лариса Ивановна Богун
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Наше издание использует положения об авторских правах Creative Commons CC BY для журналов открытого доступа.
Авторы, которые публикуются в этом журнале, соглашаются со следующими условиями:
1. Авторы оставляют за собой право на авторство своей работы и передают журналу право первой публикации этой работы на условиях лицензии Creative Commons CC BY, которая позволяет другим лицам свободно распространять опубликованную работу с обязательной ссылкой на авторов оригинальной работы и первую публикацию работы в этом журнале.
2. Авторы имеют право заключать самостоятельные дополнительные соглашения, которые касаются неэксклюзивного распространения работы в том виде, в котором она была опубликована этим журналом (например, размещать работу в электронном хранилище учреждения или публиковать в составе монографии), при условии сохранения ссылки на первую публикацию работы в этом журнале .