Trace elements and minerals content in hair of children with epileptic seizures, who had perinatal damage of central nervous system. Clinico-laboratory correlations

Authors

DOI:

https://doi.org/10.15587/2519-4798.2017.119733

Keywords:

trace elements and minerals, children, epileptic seizures, persisting epileptic seizures

Abstract

Aim of research. Identify the features of the content of trace elements and minerals in hair in children with epileptic seizures that have undergone perinatal pathology of the central nervous system. To determine the specificity of elemental status in patients whose seizures could be stopped, and in patients resistant to pharmacotherapy.

Methods. Twenty children with epileptic seizures underwent perinatal pathology of the central nervous system, aged from 3 months to 8 years (an average of 3.04±2.9 years) were controlled. Population is divided into two groups: I group (10 people) - children with epileptic seizures, managed to be stopped. Group II (10 people) - children with epileptic seizures, resistant to therapy. The control group consisted of 10 practically healthy children of the corresponding sex and age. The content of 25 chemical elements: Al, As, Be, Cd, Hg, Li, Ni. Pb, Sn, B, V, I, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Na, P, Se, Si, Zn, μg / g was determined in hair by atomic-emission spectrometry with inductively coupled argon plasma and mass spectrometry.

Results. The children with epileptic seizures showed a statistically significant increase in the content of Ca, Mg, Mn, Pb, a decrease in Sn concentration when comparing the content of elements in the group II and the control group (p <0.05). The increase in the concentration of the toxic element Pb in the group of seriously ill children with pharmacoresistant persisting epileptic seizures is 3.5 times higher than in the control group (p <0.05). The amount of Ca, Mg, Mn, Pb (ƿ from 0.42 to 0.67) in hair directly correlated (according to Spearman) with the severity of the condition and the propensity to resistance to therapy, in feedback - Sn (ƿ -0, 53). The largest number of direct average and strong links with the severity of clinical evidence and the character of structural changes in the brain was noted in Mg.

Conclusions. The revealed changes in elemental status may indicate a possible pathogenetic mechanism in the development of clinical symptoms in the patients examined, the formation of pharmaco-resistance to therapy due to a disturbance of the metal-ligand homeostasis. More studies are needed to clarify the importance of the exchange of micro- and macroelements in the development of the disease

Author Biographies

Liliya Bednenko, Medical Center "Soyuz" Sumska str., 17, Kharkiv, Ukraine, 61057

PhD, Children's Neurologist

Marina Tikhonova, Department of Health of Kharkiv Sumska str., 14, Kharkiv, Ukraine, 61002 Kharkiv City Children's Hospital No. 5 Stadionnyi passage, 6/5, Kharkiv, Ukraine, 61091

Main non-staff child neurologist 

Doctor of highest category, Head of Department

Department for Children with Pathology of Central Nervous System and the Locomotor System from the 3rd to 15th Year 

Vladimir Philiptsov, Scientific-Production Enterprise HARTRON-ARKOS LTD A. Proskury str., 1, Kharkiv, Ukraine, 61070

Leading Engineer

References

  1. Evtushenko, S., Omelianenko, A. (2005). Clinical EEG in children. Donetsk: Donechchina, 860.
  2. Litovchenko, T. A. (2010). Epilepsy: terminology, epidemiology, classification, etiology, pathogenesis. NeuroNEWS. Neurology and neuropsychiatry, 2. Availble at: https://neuronews.com.ua/ru/issue-article-277/Epilepsiya-terminologiya-epidemiologiya-klassifikaciya-etiologiya-patogenez#gsc.tab=0
  3. Unified clinical protocol of primary, emergency, secondary (specialized) and tertiary (highly specialized) medical aid (2014). Ministry of Health of Ukraine, No. 276. Availble at: http://mtd.dec.gov.ua/images/dodatki/2014_276_Epilepsii/2014_276_YKPMD_epilepsiya_dorosli.pdf
  4. Karlov, V. A. (2010). Epilepsy in children and adult women and men. Moscow: Publishing house "Medicine", 720.
  5. Sukhonosova, O. Yu., Gasyuk, G. I. (2012). An analysis of the prevalence of epilepsy and morbidity among children in the Kharkiv region. International Neurological Magazine, 6 (52). Availble at: http://www.mif-ua.com/archive/article/34830
  6. Litovchenko, T. A. (2010). Resistant epilepsies: causes and methods of treatment. NeuroNEWS, 6 (25). Availble at: https://neuronews.com.ua/ru/issue-article-373/Rezistentnye-epilepsii-prichiny-i-metody-lecheniya#gsc.tab=0
  7. Avtsyn, A. P., Zhavoronkov, A. A., Rish, M. A., Strochkova, L. S. (1991). Microelementoses of man: etiology, classification, organopathology. Moscow: Medicine, 496.
  8. Gromova, O. A., Skoromets, A. N., Egorova, E. Yu., Torshin, I. Yu., Fedotova, L. E., Yudina, N. V. (2010). Prospects for the use of magnesium in pediatrics and pediatric neurology. Pediatrics, 89 (5), 143–149.
  9. Gromova, O. A., Kudrin, A. V. (2001). Neurochemistry of macro- and trace elements. Novel pharmacotherapeutic approaches. Moscow: ALEV-V, 272.
  10. Semenov, A. S., Skalny, A. V. (2009). Immunopathological and pathobiochemical aspects of the pathogenesis of perinatal brain damage. Saint Petersburg: Science, 368.
  11. Kudrin, A. V., Gromova, O. A. (2006). Trace elements in neurology. Moscow: GEOTAR-Media, 304.
  12. Oberlis, D., Harland, B., Skalny, A. (2008). Biological role of macro- and trace elements in humans and animals. Saint Petersburg: Science, 544.
  13. Tsygan, V. N. (Ed.) (2013). Pathophysiology of Metabolism. Saint Petersburg: SpecLit, 335.
  14. Gromova, O. A. (2007). Neurotrophic system of the brain. Neuropeptides, minerals and trace elements, neutrotrophic drugs. Lecture. International Neurological Journal, 2 (12). Available at: http://www.mif-ua.com/archive/article/1884
  15. Skalny, A. V. (2004). Chemical elements in human physiology and ecology. Moscow: The publishing house "Onyx 21 century": The World, 216.
  16. Seth, R., Corniola, R. S., Gower-Winter, S. D., Morgan, T. J., Bishop, B., Levenson, C. W. (2015). Zinc deficiency induces apoptosis via mitochondrial p53- and caspase-dependent pathways in human neuronal precursor cells. Journal of Trace Elements in Medicine and Biology, 30, 59–65. doi: 10.1016/j.jtemb.2014.10.010
  17. Agnihotri, S. K., Agrawal, U., Ghosh, I. (2015). Brain most susceptible to cadmium induced oxidative stress in mice. Journal of Trace Elements in Medicine and Biology, 30, 184–193. doi: 10.1016/j.jtemb.2014.12.008
  18. Michalke, B. (2016). Review about the manganese speciation project related to neurodegeneration: An analytical chemistry approach to increase the knowledge about manganese related parkinsonian symptoms. Journal of Trace Elements in Medicine and Biology, 37, 50–61. doi: 10.1016/j.jtemb.2016.03.002
  19. Dusekab, P., Roos, P. M., Litwine, T., Schneiderm, S. A., Flateng, T. P., Aasethh, J. (2015). The neurotoxicity of iron, copper and manganese in Parkinson's and Wilson's diseases. Journal of Trace Elements in Medicine and Biology, 31, 193–203. doi: 10.1016/j.jtemb.2014.05.007
  20. Blaurock-Busch, E., Amin, O. R., Dessoki, H. H., Rabah, T. (2012). Toxic Metals and Essential Elements in Hair and Severity of Symptoms among Children with Autism. Maedica (Buchar), 7 (1), 38–48.
  21. Skalny, A. V., Simashkova, N. V., Klyushnik, T. P., Grabeklis, A. R., Radysh, I. V., Skalnaya, M. G. et. al. (2017). Assessment of serum trace elements and electrolytes in children with childhood and atypical autism. Journal of Trace Elements in Medicine and Biology, 43, 9–14. doi: 10.1016/j.jtemb.2016.09.009
  22. Gromova, O. A., Torshin, I. Yu., Egorova, E. Yu. (2012). "Clever" micronutrients. Micronutrients and the neuropsychological development of the child. Moscow: Miklosh, 168.
  23. Detkov, V. Yu. (2017). Microelementoses and metallotoxicoses in the children of St. Petersburg and ways to reduce them. St. Petersburg.
  24. Pylypets, E. Yu. (2012). The state of macro- and microelemental metabolism in children with different types of epileptic seizures. Ukrainian vision of psychonevrology, 20 (3 (72)), 42–44.
  25. Saghazadeh, A., Mahmoudi, M., Meysamie, A., Gharedaghi, M., Zamponi, G. W., Rezaei, N. (2015). Possible role of trace elements in epilepsy and febrile seizures: a meta-analysis. Nutrition Reviews, 73 (11), 760–779. doi: 10.1093/nutrit/nuv026
  26. Elshorbagy, H., Gergawi, M. E., Kamal, N. M. (2016). Study of Trace Elements and Role of Zinc Supplementation in Children with Idiopathic Intractable Epilepsy. Available at: https://www.researchgate.net/publication/301547864
  27. Saad, K., Hammad, E., Hassan, A. F., Badry, R. (2013). Trace element, oxidant, and antioxidant enzyme values in blood of children with refractory epilepsy. International Journal of Neuroscience, 124 (3), 181–186. doi: 10.3109/00207454.2013.831851
  28. Hamed, S. A., Abdellah, M. M., El-Melegy, N. (2004). Blood Levels of Trace Elements, Electrolytes, and Oxidative Stress/Antioxidant Systems in Epileptic Patients. Journal of Pharmacological Sciences, 96 (4), 465–473. doi: 10.1254/jphs.fpj04032x
  29. Wojciak, R. W., Mojs, E., Stanislawska-Kubiak, M., Samborski, W. (2013). The serum zinc, copper, iron, and chromium concentrations in epileptic children. Epilepsy Research, 104 (1-2), 40–44. doi: 10.1016/j.eplepsyres.2012.09.009
  30. Kumar, S., Kumar, V., Mittal, R., Jain, D. C. (2013). Trace Elemental Analysis in Epileptic Children. Open Journal of Applied Sciences, 3 (8), 449–476. doi: 10.4236/ojapps.2013.38056
  31. Talat, M., Ahmed, A., Mohammed, L. (2015). Serum levels of zinc and copper in epileptic children during long-term therapy with anticonvulsants. Neurosciences, 20 (4), 341–345. doi: 10.17712/nsj.2015.4.20150336
  32. Skalnaya, M. G., Demidov, V. A., Skalny, A. V. (2003). About the limits of the physiological (normal) content of Ca, Mg, Hb, Fe, Zn and Cu in human hair. Micronutrients in medicine, 4 (2), 5–10.

Published

2017-12-30

How to Cite

Bednenko, L., Tikhonova, M., & Philiptsov, V. (2017). Trace elements and minerals content in hair of children with epileptic seizures, who had perinatal damage of central nervous system. Clinico-laboratory correlations. ScienceRise: Medical Science, (12 (20), 4–12. https://doi.org/10.15587/2519-4798.2017.119733

Issue

Section

Medical Science