Analysis of the stress-deformed condition of models of trochanteric fractures of femoral bone of 5 type by evans after endoprosthesis

Authors

  • Volodymyr Babalian Kharkiv Medical Academy of Postgraduate Education Amosova str., 58, Kharkiv, Ukraine, 61176, Ukraine https://orcid.org/0000-0003-4149-2542
  • Mihajlo Karpіnskiy SI "Sytenko Institute of Spine and joint Pathology of National Academy of Medical Sciences of Ukraine" Pushkinska str., 80, Kharkiv, Ukraine, 61024, Ukraine https://orcid.org/0000-0002-3004-2610
  • Oleksandr Jaresko SI "Sytenko Institute of Spine and joint Pathology of National Academy of Medical Sciences of Ukraine" Pushkinska str., 80, Kharkiv, Ukraine, 61024, Ukraine

DOI:

https://doi.org/10.15587/2519-4798.2018.122199

Keywords:

femoral bone fractures, cement bipolar hemiarthoplasty, modeling of femoral bone fractures

Abstract

Aim of research: to develop the mathematical model of trochanteric fractures of a femur by Evans’ classification and to use it for studying main directions of loading the proximal femur section at endoprosthesis with the additional fixation of fragments by needles.

Materials and methods of research. For solving the set task, we developed the mathematical models of a femur with trochanteric fractures of different types by Evans’ classification. We modeled trochanteric fractures of a femoral bone of 5 type by Evans, using the standard endoprosthesis, fixing separate fragments and model endoprosthesis of the offered construction.

Results. The loading results were obtained. At using the endoprosthesis, the zone of maximal loads covers its neck and is 97,6 МPа on its upper surface and 118,4 МPа – on the low one. The least loaded zone is the little trochanter area, where the load value is only 1,0 МPа, and adjacent zones, where tensions don’t exceed the value 10,0 МPа. The diaphyseal part of a femur is characterized with the tension values at the level from 21,1 to 23,8 МPа. At using the model system, the most tension level (88,2 МPа) is observed in the upper part of the neck. Tensions in other control points are distributed evenly and don’t exceed the value 25,4 МPа by absolute values in the femoral diaphase and 17,3 МPа in the fracture zone.

Conclusions. At modeling variants of endoprosthesis of the proximal section of a femur with trochanteric fractures of 5 type by Evans’ classification, it was determined, that the model system at all fracture types allows to lower a tension in practically all control points of bone elements of the models essentially. Elements of metal constructions demonstrate zones of higher tensions, where they are rather higher than in the model with the endoprosthesis at the expanse of the essentially less hardness in the node of connecting the carrying pivot with the intramedullary one

Author Biographies

Volodymyr Babalian, Kharkiv Medical Academy of Postgraduate Education Amosova str., 58, Kharkiv, Ukraine, 61176

PhD, Associate Professor

Department of Traumatology, Anaesthesiology and Military Surgery

Mihajlo Karpіnskiy, SI "Sytenko Institute of Spine and joint Pathology of National Academy of Medical Sciences of Ukraine" Pushkinska str., 80, Kharkiv, Ukraine, 61024

Researcher

Laboratory of Biomechanics

Oleksandr Jaresko, SI "Sytenko Institute of Spine and joint Pathology of National Academy of Medical Sciences of Ukraine" Pushkinska str., 80, Kharkiv, Ukraine, 61024

Junior Researcher

Laboratory of Biomechanics

References

  1. Little, E. A., Eccles, M. P. (2010). A systematic review of the effectiveness of interventions to improve post-fracture investigation and management of patients at risk of osteoporosis. Implementation Science, 5 (1), 80. doi: 10.1186/1748-5908-5-80
  2. Bessho, M., Ohnishi, I., Matsuyama, J., Matsumoto, T., Imai, K., Nakamura, K. (2007). Prediction of strength and strain of the proximal femur by a CT-based finite element method. Journal of Biomechanics, 40 (8), 1745–1753. doi: 10.1016/j.jbiomech.2006.08.003
  3. Bessho, M., Ohnishi, I., Matsumoto, T., Ohashi, S., Matsuyama, J., Tobita, K. et. al. (2009). Prediction of proximal femur strength using a CT-based nonlinear finite element method: Differences in predicted fracture load and site with changing load and boundary conditions. Bone, 45 (2), 226–231. doi: 10.1016/j.bone.2009.04.241
  4. Orwoll, E. S., Marshall, L. M., Nielson, C. M., Cummings, S. R., Lapidus, J. et. al. (2009). Finite Element Analysis of the Proximal Femur and Hip Fracture Risk in Older Men. Journal of Bone and Mineral Research, 24 (3), 475–483. doi: 10.1359/jbmr.081201
  5. Mazniakov, S. M., Hurbanova, T. S., Cheverda, V. M., Khvysiuk, O. M., Babalian, V. O., Kalchenko, A. V., Cherepov, D. V. (2015). Sposib likuvannia ulamkovykh perelomiv, khybnykh suhlobiv ta perelomiv proksymalnoho viddilu stehna pislia metaloosteosyntezu: Pat. No. 101594 UA. MPK A61B 17/56 (2006.01). No. u20150209; declareted: 10.03.2015; published: 25.09.2015, Bul. No. 18.
  6. Babalian, V. O., Lukianchenko, V. V., Kalchenko, A. V. (2016). Modulnyi endoprotez shyiky i holivky stehnovoi kistky: Pat. No. 108371 UA. MPK: A61F 2/32, A61B 17/74. No. u201600892; declareted: 04.02.2016; published: 11.07.2016, Bul. No. 13.
  7. Cheverda, V. M., Lukianchenko, V. V., Kalchenko, A. V., Khvysiuk, O. M., Babalian, V. O., Cherepov, D. V. (2016). Modulnyi endoprotez proksymalnoho viddilu stehnovoi kistky: Pat. No. 109846 UA. MPK: A61F 2/36. No. u201602558; declareted: 16.03.2016; published: 12.09.2016, Bul. No. 17.
  8. Lukianchenko, V. V., Cheverda, V. M., Cherepov, D. V., Khvysiuk, O. M., Kalchenko, A. V., Babalian, V. O. (2016). Modulnyi endoprotez shyiky i holovky stehnovoi kistky: Pat. No. 109803 UA. MPK: A61B 17/56, A61F 2/32, A61F 2/36, A61B 17/72, A61B 17/74. No. u201601835; declareted: 26.02.2016; published: 12.09.2016, Bul. No. 17.
  9. Babalian, V. O., Lukianchenko, V. V., Hurbanova, T. S. (2016). Sposib intrameduliarnoho osteosyntezu perelomiv proksymalnoho viddilu stehnovoi kistky: Pat. No. 113792. MPK A61B 17/56 (2006.01), A61B 17/74 (2006.01), A61F 2/32 (2006.01). No. u201609184; declareted: 01.09.2016; published: 10.02.2017, Bul. No. 3.
  10. Babalian, V. O., Volodkova, N. V., Lukianchenko, V. V., Khvysiuk, O. M., Cherepov, D. V. (2016). Modulna systema dlia intrameduliarnoho osteosyntezu perelomiv proksymalnoho viddilu stehnovoi kistky: Pat. No. 114072 UA. MPK A61B 17/56 (2006.01), A61B 17/74 (2006.01), A61F 2/32 (2006.01). No. u201609424; declareted: 12.09.2016; published: 27.02.2017, Bul. No. 4.
  11. Berezovskyi, V. A., Kolotilov, N. N. (1990). Biophysical characteristics of human tissue. Kyiv: Naukova dumka, 224.
  12. Obraztsov, I. F., Adamovich, I. S., Barer, A. S. et. al. (1988). Problemy prochnosti v biomekhanike. Moscow: Vysshaya shkola, 312.
  13. Gere, J. M., Timoshenko, S. P. (1997). Mechanics of Material. Boston: PWS Pub Co, 912.
  14. Yanson, Kh. A. (1975). Biomekhanika nizhney konechnosti cheloveka. Riga: Zinatne, 324.
  15. Zenkevich, O. K. (1978). Metod konechnykh elementov v tekhnike. Moscow: Mir, 519.
  16. Alyamovskiy, A. A. (2004). SolidWorks/COSMOSWorks. Inzhenernyy analiz metodom konechnykh elementov. Moscow: DMK Press, 432.
  17. Hernandez-Rodriguez, M. A. L., Ortega-Saenz, J. A., Contreras-Hernandez, G. R. (2010). Failure analysis of a total hip prosthesis implanted in active patient. Journal of the Mechanical Behavior of Biomedical Materials, 3 (8), 619–622. doi: 10.1016/j.jmbbm.2010.06.004
  18. Colic, K., Sedmak, A., Grbovic, A., Tatic, U., Sedmak, S., Djordjevic, B. (2016). Finite Element Modeling of Hip Implant Static Loading. Procedia Engineering, 149, 257–262. doi: 10.1016/j.proeng.2016.06.664

Published

2018-01-31

How to Cite

Babalian, V., Karpіnskiy M., & Jaresko, O. (2018). Analysis of the stress-deformed condition of models of trochanteric fractures of femoral bone of 5 type by evans after endoprosthesis. ScienceRise: Medical Science, (1 (21), 14–19. https://doi.org/10.15587/2519-4798.2018.122199

Issue

Section

Medical Science