Analysis of the stress-deformed condition of models of trochanteric fractures of femoral bone of 5 type by evans after endoprosthesis
DOI:
https://doi.org/10.15587/2519-4798.2018.122199Keywords:
femoral bone fractures, cement bipolar hemiarthoplasty, modeling of femoral bone fracturesAbstract
Aim of research: to develop the mathematical model of trochanteric fractures of a femur by Evans’ classification and to use it for studying main directions of loading the proximal femur section at endoprosthesis with the additional fixation of fragments by needles.
Materials and methods of research. For solving the set task, we developed the mathematical models of a femur with trochanteric fractures of different types by Evans’ classification. We modeled trochanteric fractures of a femoral bone of 5 type by Evans, using the standard endoprosthesis, fixing separate fragments and model endoprosthesis of the offered construction.
Results. The loading results were obtained. At using the endoprosthesis, the zone of maximal loads covers its neck and is 97,6 МPа on its upper surface and 118,4 МPа – on the low one. The least loaded zone is the little trochanter area, where the load value is only 1,0 МPа, and adjacent zones, where tensions don’t exceed the value 10,0 МPа. The diaphyseal part of a femur is characterized with the tension values at the level from 21,1 to 23,8 МPа. At using the model system, the most tension level (88,2 МPа) is observed in the upper part of the neck. Tensions in other control points are distributed evenly and don’t exceed the value 25,4 МPа by absolute values in the femoral diaphase and 17,3 МPа in the fracture zone.
Conclusions. At modeling variants of endoprosthesis of the proximal section of a femur with trochanteric fractures of 5 type by Evans’ classification, it was determined, that the model system at all fracture types allows to lower a tension in practically all control points of bone elements of the models essentially. Elements of metal constructions demonstrate zones of higher tensions, where they are rather higher than in the model with the endoprosthesis at the expanse of the essentially less hardness in the node of connecting the carrying pivot with the intramedullary one
References
- Little, E. A., Eccles, M. P. (2010). A systematic review of the effectiveness of interventions to improve post-fracture investigation and management of patients at risk of osteoporosis. Implementation Science, 5 (1), 80. doi: 10.1186/1748-5908-5-80
- Bessho, M., Ohnishi, I., Matsuyama, J., Matsumoto, T., Imai, K., Nakamura, K. (2007). Prediction of strength and strain of the proximal femur by a CT-based finite element method. Journal of Biomechanics, 40 (8), 1745–1753. doi: 10.1016/j.jbiomech.2006.08.003
- Bessho, M., Ohnishi, I., Matsumoto, T., Ohashi, S., Matsuyama, J., Tobita, K. et. al. (2009). Prediction of proximal femur strength using a CT-based nonlinear finite element method: Differences in predicted fracture load and site with changing load and boundary conditions. Bone, 45 (2), 226–231. doi: 10.1016/j.bone.2009.04.241
- Orwoll, E. S., Marshall, L. M., Nielson, C. M., Cummings, S. R., Lapidus, J. et. al. (2009). Finite Element Analysis of the Proximal Femur and Hip Fracture Risk in Older Men. Journal of Bone and Mineral Research, 24 (3), 475–483. doi: 10.1359/jbmr.081201
- Mazniakov, S. M., Hurbanova, T. S., Cheverda, V. M., Khvysiuk, O. M., Babalian, V. O., Kalchenko, A. V., Cherepov, D. V. (2015). Sposib likuvannia ulamkovykh perelomiv, khybnykh suhlobiv ta perelomiv proksymalnoho viddilu stehna pislia metaloosteosyntezu: Pat. No. 101594 UA. MPK A61B 17/56 (2006.01). No. u20150209; declareted: 10.03.2015; published: 25.09.2015, Bul. No. 18.
- Babalian, V. O., Lukianchenko, V. V., Kalchenko, A. V. (2016). Modulnyi endoprotez shyiky i holivky stehnovoi kistky: Pat. No. 108371 UA. MPK: A61F 2/32, A61B 17/74. No. u201600892; declareted: 04.02.2016; published: 11.07.2016, Bul. No. 13.
- Cheverda, V. M., Lukianchenko, V. V., Kalchenko, A. V., Khvysiuk, O. M., Babalian, V. O., Cherepov, D. V. (2016). Modulnyi endoprotez proksymalnoho viddilu stehnovoi kistky: Pat. No. 109846 UA. MPK: A61F 2/36. No. u201602558; declareted: 16.03.2016; published: 12.09.2016, Bul. No. 17.
- Lukianchenko, V. V., Cheverda, V. M., Cherepov, D. V., Khvysiuk, O. M., Kalchenko, A. V., Babalian, V. O. (2016). Modulnyi endoprotez shyiky i holovky stehnovoi kistky: Pat. No. 109803 UA. MPK: A61B 17/56, A61F 2/32, A61F 2/36, A61B 17/72, A61B 17/74. No. u201601835; declareted: 26.02.2016; published: 12.09.2016, Bul. No. 17.
- Babalian, V. O., Lukianchenko, V. V., Hurbanova, T. S. (2016). Sposib intrameduliarnoho osteosyntezu perelomiv proksymalnoho viddilu stehnovoi kistky: Pat. No. 113792. MPK A61B 17/56 (2006.01), A61B 17/74 (2006.01), A61F 2/32 (2006.01). No. u201609184; declareted: 01.09.2016; published: 10.02.2017, Bul. No. 3.
- Babalian, V. O., Volodkova, N. V., Lukianchenko, V. V., Khvysiuk, O. M., Cherepov, D. V. (2016). Modulna systema dlia intrameduliarnoho osteosyntezu perelomiv proksymalnoho viddilu stehnovoi kistky: Pat. No. 114072 UA. MPK A61B 17/56 (2006.01), A61B 17/74 (2006.01), A61F 2/32 (2006.01). No. u201609424; declareted: 12.09.2016; published: 27.02.2017, Bul. No. 4.
- Berezovskyi, V. A., Kolotilov, N. N. (1990). Biophysical characteristics of human tissue. Kyiv: Naukova dumka, 224.
- Obraztsov, I. F., Adamovich, I. S., Barer, A. S. et. al. (1988). Problemy prochnosti v biomekhanike. Moscow: Vysshaya shkola, 312.
- Gere, J. M., Timoshenko, S. P. (1997). Mechanics of Material. Boston: PWS Pub Co, 912.
- Yanson, Kh. A. (1975). Biomekhanika nizhney konechnosti cheloveka. Riga: Zinatne, 324.
- Zenkevich, O. K. (1978). Metod konechnykh elementov v tekhnike. Moscow: Mir, 519.
- Alyamovskiy, A. A. (2004). SolidWorks/COSMOSWorks. Inzhenernyy analiz metodom konechnykh elementov. Moscow: DMK Press, 432.
- Hernandez-Rodriguez, M. A. L., Ortega-Saenz, J. A., Contreras-Hernandez, G. R. (2010). Failure analysis of a total hip prosthesis implanted in active patient. Journal of the Mechanical Behavior of Biomedical Materials, 3 (8), 619–622. doi: 10.1016/j.jmbbm.2010.06.004
- Colic, K., Sedmak, A., Grbovic, A., Tatic, U., Sedmak, S., Djordjevic, B. (2016). Finite Element Modeling of Hip Implant Static Loading. Procedia Engineering, 149, 257–262. doi: 10.1016/j.proeng.2016.06.664
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Volodymyr Babalian, Mihajlo Karpіnskiy, Oleksandr Jaresko
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.