Nutritional therapy in children with sepsis and septic shock: unresolved questions and the need for an individualized approach

Authors

DOI:

https://doi.org/10.15587/2519-4798.2023.281226

Keywords:

sepsis in children, nutritional support, protein-energy malnutrition, hypercatabolism, hypermetabolism syndrome, enteral nutrition, parenteral nutrition, critical illness

Abstract

The aim. This review provides a meta-analysis of current guidelines on nutrition in critically ill patients, including SCCM–ASPEN (2017), SSC (2012, 2021), ESPNIC (2020), and SSC (2020) pediatric sepsis guidelines. While the ESPNIC (2020) guidance complements the existing ASPEN (2017) guidelines for critical paediatrics, the Children's SSC (2020) did not find sufficient direct evidence to develop strong nutritional recommendations for children with sepsis/septic shock.

Materials and methods. Looking for publications on nutritional assessment and nutritional support in children with sepsis have been keywords sepsis in children, nutrition, and critical conditions. Literature searched and analyzed from PubMed, Google Scholar and ScienceDirect databases. Revealed under-a sufficient amount of work on pediatric sepsis (an exception is neonatal sepsis), there are no protocols for assessing nutritional status and its correction in children diagnosed with sepsis/SS.

Results. Despite ongoing research in this area, many questions remain unresolved and require systematic study. While some small and large pediatric studies have recommended nutritional therapy, the heterogeneity of children's ICUs in terms of age, pathology, disease severity, comorbidities, and nutritional status precludes a one-size-fits-all approach to nutrition in critically ill children. Therefore, an individualized approach to nutrition is necessary, considering the patient's unique circumstances and the risk/benefit ratio of different nutritional therapies.

Conclusions. An extensive literature review did not reveal strong nutritional recommendations for children with sepsis/SS, underscoring the need for future research on the assessment and correction of protein-energy malnutrition in this population. Overall, this review highlights the importance of tailoring nutritional therapy to the individual needs of critically ill children with sepsis/ septic shock to optimize outcomes

Author Biographies

Elmira Satvaldieva, Tashkent Pediatric Medical Institute

Doctor of Medical Sciences, Professor, Head of Department

Department of Anesthesiology and Resuscitation

Gulchekhra Ashurova, Tashkent Pediatric Medical Institute

Assistant

Department of Anesthesiology and Resuscitation

Fuat Kurbanov, Tashkent Pediatric Medical Institute

PhD

Department of Anesthesiology and Resuscitation

References

  1. Machado, F., de Souza, D. (2018). Epidemiology of Pediatric Septic Shock. Journal of Pediatric Intensive Care, 8 (1), 3–10. doi: https://doi.org/10.1055/s-0038-1676634
  2. Fleischmann-Struzek, C., Goldfarb, D. M., Schlattmann, P., Schlapbach, L. J., Reinhart, K., Kissoon, N. (2018). The global burden of paediatric and neonatal sepsis: a systematic review. The Lancet Respiratory Medicine, 6 (3), 223–230. doi: https://doi.org/10.1016/s2213-2600(18)30063-8
  3. World Health Organization. (‎2011)‎. Report on the burden of endemic health care-associated infection worldwide. World Health Organization, 40. Available at: https://apps.who.int/iris/handle/10665/80135
  4. Singer, M., Deutschman, C. S., Seymour, C. W., Shankar-Hari, M., Annane, D., Bauer, M. et al. (2016). The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315 (8), 801–810. doi: https://doi.org/10.1001/jama.2016.0287
  5. Gotts, J. E., Matthay, M. A. (2016). Sepsis: pathophysiology and clinical management. BMJ, i1585. doi: https://doi.org/10.1136/bmj.i1585
  6. Schuetz, P. (2011). Procalcitonin Algorithms for Antibiotic Therapy Decisions. Archives of Internal Medicine, 171 (15), 1322–1331. doi: https://doi.org/10.1001/archinternmed.2011.318
  7. Kumar, A., Roberts, D., Wood, K. E., Light, B., Parrillo, J. E., Sharma, S. et al. (2006). Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock*. Critical Care Medicine, 34 (6), 1589–1596. doi: https://doi.org/10.1097/01.ccm.0000217961.75225.e9
  8. Dellinger, R. P., Levy, M. M., Rhodes, A., Annane, D., Gerlach, H., Opal, S. M. et al. (2013). Surviving Sepsis Campaign. Critical Care Medicine, 41 (2), 580–637. doi: https://doi.org/10.1097/ccm.0b013e31827e83af
  9. Selivanova, A. V. (2012). Hormonal and metabolic changes in patients in critical condition. Clinical laboratory diagnostics, 11, 13–17.
  10. Bengmark, S. (2013). Nutrition of the Critically Ill – A 21st-Century Perspective. Nutrients, 5 (1), 162–207. doi: https://doi.org/10.3390/nu5010162
  11. Nespoli, L., Coppola, S., Gianotti, L. (2012). The Role of the Enteral Route and the Composition of Feeds in the Nutritional Support of Malnourished Surgical Patients. Nutrients, 4 (9), 1230–1236. doi: https://doi.org/10.3390/nu4091230
  12. Hur, H., Kim, S. G., Shim, J. H., Song, K. Y., Kim, W., Park, C. H., Jeon, H. M. (2011). Effect of early oral feeding after gastric cancer surgery: A result of randomized clinical trial. Surgery, 149 (4), 561–568. doi: https://doi.org/10.1016/j.surg.2010.10.003
  13. Sartelli, M., Catena, F., Ansaloni, L., Leppaniemi, A., Taviloglu, K., van Goor, H. et al. (2012). Complicated intra-abdominal infections in Europe: a comprehensive review of the CIAO study. World Journal of Emergency Surgery, 7 (1), 36. doi: https://doi.org/10.1186/1749-7922-7-36
  14. Doig, G. S., Simpson, F., Sweetman, E. A. et al. (2013). Early Parenteral Nutrition in Critically Ill Patients With Short-term Relative Contraindications to Early Enteral Nutrition. JAMA, 309 (20), 2130–2138. doi: https://doi.org/10.1001/jama.2013.5124
  15. Weiss, S. L., Peters, M. J., Alhazzani, W., Agus, M. S. D., Flori, H. R., Inwald, D. P. et al. (2020). Surviving Sepsis Campaign International Guidelines for the Management of Septic Shock and Sepsis-Associated Organ Dysfunction in Children. Pediatric Critical Care Medicine, 21 (2), e52–e106. doi: https://doi.org/10.1097/pcc.0000000000002198
  16. Evans, L., Rhodes, A., Alhazzani, W., Antonelli, M., Coopersmith, C. M., French, C. et al. (2021). Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Medicine, 47 (11), 1181–1247. doi: https://doi.org/10.1007/s00134-021-06506-y
  17. Kudsk, K. A. (2002). Current aspects of mucosal immunology and its influence by nutrition. The American Journal of Surgery, 183 (4), 390–398. doi: https://doi.org/10.1016/s0002-9610(02)00821-8
  18. McClave, S. A., Heyland, D. K. (2009). The Physiologic Response and Associated Clinical Benefits From Provision of Early Enteral Nutrition. Nutrition in Clinical Practice, 24 (3), 305–315. doi: https://doi.org/10.1177/0884533609335176
  19. Reignier, J., Boisramé-Helms, J., Brisard, L., Lascarrou, J.-B., Ait Hssain, A., Anguel, N. et al. (2018). Enteral versus parenteral early nutrition in ventilated adults with shock: a randomised, controlled, multicentre, open-label, parallel-group study (NUTRIREA-2). The Lancet, 391 (10116), 133–143. doi: https://doi.org/10.1016/s0140-6736(17)32146-3
  20. Mehta, N. M., Skillman, H. E., Irving, S. Y., Coss-Bu, J. A., Vermilyea, S., Farrington, E. A. et al. (2017). Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Pediatric Critically Ill Patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition. Journal of Parenteral and Enteral Nutrition, 41 (5), 706–742. doi: https://doi.org/10.1177/0148607117711387
  21. Jotterand Chaparro, C., Laure Depeyre, J., Longchamp, D., Perez, M.-H., Taffé, P., Cotting, J. (2016). How much protein and energy are needed to equilibrate nitrogen and energy balances in ventilated critically ill children? Clinical Nutrition, 35 (2), 460–467. doi: https://doi.org/10.1016/j.clnu.2015.03.015
  22. Mehta, N. M., Bechard, L. J., Zurakowski, D., Duggan, C. P., Heyland, D. K. (2015). Adequate enteral protein intake is inversely associated with 60-d mortality in critically ill children: a multicenter, prospective, cohort study. The American Journal of Clinical Nutrition, 102 (1), 199–206. doi: https://doi.org/10.3945/ajcn.114.104893
  23. Wong, J. J.-M., Han, W. M., Sultana, R., Loh, T. F., Lee, J. H. (2016). Nutrition Delivery Affects Outcomes in Pediatric Acute Respiratory Distress Syndrome. Journal of Parenteral and Enteral Nutrition, 41 (6), 1007–1013. doi: https://doi.org/10.1177/0148607116637937
  24. Mikhailov, T. A., Kuhn, E. M., Manzi, J., Christensen, M., Collins, M., Brown, A.-M. et al. (2014). Early Enteral Nutrition Is Associated With Lower Mortality in Critically Ill Children. Journal of Parenteral and Enteral Nutrition, 38 (4), 459–466. doi: https://doi.org/10.1177/0148607113517903
  25. Prakash, V., Parameswaran, N., Biswal, N. (2016). Early versus late enteral feeding in critically ill children: a randomized controlled trial. Intensive Care Medicine, 42 (3), 481–482. doi: https://doi.org/10.1007/s00134-015-4176-4
  26. Abdul Manaf, Z., Kassim, N., Hamzaid, N. H., Razali, N. H. (2013). Delivery of enteral nutrition for critically ill children. Nutrition & Dietetics, 70 (2), 120–125. doi: https://doi.org/10.1111/1747-0080.12007
  27. Mikhailov, T. A., Gertz, S. J., Kuhn, E. M., Scanlon, M. C., Rice, T. B., Goday, P. S. (2018). Early Enteral Nutrition Is Associated With Significantly Lower Hospital Charges in Critically Ill Children. Journal of Parenteral and Enteral Nutrition, 42 (5), 920–925. doi: https://doi.org/10.1002/jpen.1025
  28. Carpenito, K.-R., Prusinski, R., Kirchner, K., Simsic, J., Miao, Y., Luce, W. et al. (2016). Results of a Feeding Protocol in Patients Undergoing the Hybrid Procedure. Pediatric Cardiology, 37 (5), 852–859. doi: https://doi.org/10.1007/s00246-016-1359-x
  29. Briassoulis, G., Filippou, O., Hatzi, E., Papassotiriou, I., Hatzis, T. (2005). Early enteral administration of immunonutrition in critically ill children: results of a blinded randomized controlled clinical trial. Nutrition, 21 (7-8), 799–807. doi: https://doi.org/10.1016/j.nut.2004.12.006
  30. Briassoulis, G., Filippou, O., Kanariou, M., Hatzis, T. (2005). Comparative effects of early randomized immune or non-immune-enhancing enteral nutrition on cytokine production in children with septic shock. Intensive Care Medicine, 31 (6), 851–858. doi: https://doi.org/10.1007/s00134-005-2631-3
  31. Briassoulis, G., Filippou, O., Kanariou, M., Papassotiriou, I., Hatzis, T. (2006). Temporal nutritional and inflammatory changes in children with severe head injury fed a regular or an immune-enhancing diet: A randomized, controlled trial. Pediatric Critical Care Medicine, 7 (1), 56–62. doi: https://doi.org/10.1097/01.pcc.0000192339.44871.26
  32. Carcillo, J. A., Michael Dean, J., Holubkov, R., Berger, J., Meert, K. L., Anand, K. J. S. et al. (2012). The randomized comparative pediatric critical illness stress-induced immune suppression (CRISIS) prevention trial*. Pediatric Critical Care Medicine, 13 (2), 165–173. doi: https://doi.org/10.1097/pcc.0b013e31823896ae
  33. Larsen, B. M. K., Field, C. J., Leong, A. Y., Goonewardene, L. A., Van Aerde, J. E., Joffe, A. R., Clandinin, M. T. (2013). Pretreatment With an Intravenous Lipid Emulsion Increases Plasma Eicosapentanoic Acid and Downregulates Leukotriene B4, Procalcitonin, and Lymphocyte Concentrations After Open Heart Surgery in Infants. Journal of Parenteral and Enteral Nutrition, 39 (2), 171–179. doi: https://doi.org/10.1177/0148607113505326
  34. Larsen, B. M. K., Goonewardene, L. A., Joffe, A. R., Van Aerde, J. E., Field, C. J., Olstad, D. L., Clandinin, M. T. (2012). Pre-treatment with an intravenous lipid emulsion containing fish oil (eicosapentaenoic and docosahexaenoic acid) decreases inflammatory markers after open-heart surgery in infants: A randomized, controlled trial. Clinical Nutrition, 31 (3), 322–329. doi: https://doi.org/10.1016/j.clnu.2011.11.006
  35. Erpuleva, Y. V. (2021). Glutamine solution in the parenteral nutrition for children with critical conditions. Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care, 11 (4), 555–560. doi: https://doi.org/10.17816/psaic1012
  36. Bober-Olesińska, K., Kornacka, M. K. (2005). Effects of glutamine supplemented parenteral nutrition on the incidence of necrotizing enterocolitis, nosocomial sepsis and length of hospital stay in very low birth weight infants. Med Wieku Rozwoj, 9 (3-1), 325–333.
  37. Poindexter, B. B., Ehrenkranz, R. A., Stoll, B. J., Wright, L. L., Poole, W. K., Oh, W. et al. (2004). Parenteral Glutamine Supplementation Does Not Reduce the Risk of Mortality or Late-Onset Sepsis in Extremely Low Birth Weight Infants. Pediatrics, 113 (5), 1209–1215. doi: https://doi.org/10.1542/peds.113.5.1209
  38. Holecek, M. (2012). Side Effects of Long‐Term Glutamine Supplementation. Journal of Parenteral and Enteral Nutrition, 37 (5), 607–616. doi: https://doi.org/10.1177/0148607112460682
  39. Griffiths, R. D., Allen, K. D., Andrews, F. J., Jones, C. (2002). Infection, multiple organ failure, and survival in the intensive care unit: influence of glutamine-supplemented parenteral nutrition on acquired infection. Nutrition, 18 (7-8), 546–552. doi: https://doi.org/10.1016/s0899-9007(02)00817-1
  40. Tume, L. N., Valla, F. V., Joosten, K., Jotterand Chaparro, C., Latten, L., Marino, L. V. et al. (2020). Nutritional support for children during critical illness: European Society of Pediatric and Neonatal Intensive Care (ESPNIC) metabolism, endocrine and nutrition section position statement and clinical recommendations. Intensive Care Medicine, 46 (3), 411–425. doi: https://doi.org/10.1007/s00134-019-05922-5
  41. Weiss, S. L., Peters, M. J., Alhazzani, W., Agus, M. S. D., Flori, H. R., Inwald, D. P. et al. (2020). Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Intensive Care Medicine, 46 (S1), 10–67. doi: https://doi.org/10.1007/s00134-019-05878-6
  42. Hamilton, S., McAleer, D. M., Ariagno, K., Barrett, M., Stenquist, N., Duggan, C. P., Mehta, N. M. (2014). A Stepwise Enteral Nutrition Algorithm for Critically Ill Children Helps Achieve Nutrient Delivery Goals*. Pediatric Critical Care Medicine, 15 (7), 583–589. doi: https://doi.org/10.1097/pcc.0000000000000179
  43. Panchal, A. K., Manzi, J., Connolly, S., Christensen, M., Wakeham, M., Goday, P. S., Mikhailov, T. A. (2014). Safety of Enteral Feedings in Critically Ill Children Receiving Vasoactive Agents. Journal of Parenteral and Enteral Nutrition, 40 (2), 236–241. doi: https://doi.org/10.1177/0148607114546533
  44. King, W., Petrillo, T., Pettignano, R. (2004). Enteral nutrition and cardiovascular medications in the pediatric intensive care unit. Journal of Parenteral and Enteral Nutrition, 28 (5), 334–338. doi: https://doi.org/10.1177/0148607104028005334
  45. Lekmanov, A. U. (2021). Sepsis in children: federal clinical guideline (draft). Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care, 11 (2), 241–242. doi: https://doi.org/10.17816/psaic969
  46. Mehta, N. M. (2014). Feeding the Gut During Critical Illness – It Is About Time. Journal of Parenteral and Enteral Nutrition, 38 (4), 410–414. doi: https://doi.org/10.1177/0148607114522489

Downloads

Published

2023-03-31

How to Cite

Satvaldieva, E., Ashurova, G., & Kurbanov, F. (2023). Nutritional therapy in children with sepsis and septic shock: unresolved questions and the need for an individualized approach. ScienceRise: Medical Science, (2(53), 4–11. https://doi.org/10.15587/2519-4798.2023.281226

Issue

Section

Medical Science