Research of electrical properties of epoxy composite with carbon fillers

Authors

DOI:

https://doi.org/10.15587/2312-8372.2017.104807

Keywords:

carbon nanotubes, epoxy composite, thermally expanded graphite, resistivity, dielectric constant

Abstract

The object of research in this study is electroconductive epoxy compositions with carbon fillers. Based on the porous structure of the filler, the technology of manufacturing composite materials in the form of films using ultrasound is proposed. The effect of the type and content of the carbon filler on the electrical properties of the epoxy composite is investigated. It is found that the resistivity in the direction perpendicular to the axis of formation of samples with content of thermally expanded graphite (normal and after ultrasonic grinding at room temperature) can reach 7.5∙10-6 Ω∙m, while for carbon nanotubes is 5.1∙10-8 Ω∙m. It is found that the percolation threshold for systems of epoxy resin – thermally expanded graphite is ~ 5 wt. %, and for epoxy resin systems carbon nanotubes is ~ 1 wt. %. Research results of the effect of carbon filler on the dielectric properties of epoxy composite are presented. It is experimentally established that as the filler concentration increases, the dielectric constant increases in the polymer matrix. A sharp increase in the dielectric constant of research systems is observed with a CNT concentration of 1%. An increase in the dielectric losses of the orientational polarization is observed as the frequency of the alternating current increases to 105 Hz.

Author Biography

Liubov Melnуk, National Technical University of Ukraine «Ihor Sikorsky Kyiv Polytechnic Institute», 37, Victory ave., Kyiv, Ukraine, 03056

PhD, Senior Lecturer

Department of Chemical Technology of Composites

References

  1. Trenisova, A. L. (2009). Poluchenie kompozitsionnyh materialov na osnove epoksidnogo oligomera i nanonapolnitelei. Moscow, 16.
  2. Meleshko, A. I., Polovnikov, S. P. (2007). Uglerod, uglerodnye volokna, uglerodnye kompozity. Moscow: SAINS-PRESS, 192.
  3. Melnyk, L. I. (2009). Zakonomirnosti formuvannia i zastosuvannia termostiikykh strumoprovidnykh syloksanhrafitovykh materialiv. Kyiv, 167.
  4. Asai, K., Okamoto, M., Tashiro, K. (2008). Crystallization behavior of nano-composite based on poly(vinylidene fluoride) and organically modified layered titanate. Polymer, 49 (19), 4298–4306. doi:10.1016/j.polymer.2008.07.037
  5. Hagedorn, H.-W., Lower, Y., Dickel, T., Stenger, K., Yong, L. X., Teo, K. W., Fritzsche, S., Schafer, M.; Assignee: Heraeus Deutschland GMBH&Co. Kg, Heraeus Materials Singapore Pte., Ltd. (2016, February 04). Epoxy resin-based electroconductive composition. WIPO Patent Application WO/2016/018191. Appl. № SG2015/000131. Filed June 19, 2015. Available: http://www.sumobrain.com/patents/wipo/Epoxy-resin-based-electroconductive-composition/WO2016018191A1.html
  6. Chung, S.-L., Lin, J.-S. (2016). Thermal Conductivity of Epoxy Resin Composites Filled with Combustion Synthesized h-BN Particles. Molecules, 21 (5), 670. doi:10.3390/molecules21050670
  7. Gu, J., Zhang, Q., Dang, J., Xie, C. (2011). Thermal conductivity epoxy resin composites filled with boron nitride. Polymers for Advanced Technologies, 23 (6), 1025–1028. doi:10.1002/pat.2063
  8. Wattanakul, K., Manuspiya, H., Yanumet, N. (2010). Effective surface treatments for enhancing the thermal conductivity of BN-filled epoxy composite. Journal of Applied Polymer Science, 119 (6), 3234–3243. doi:10.1002/app.32889
  9. Kim, K., Kim, J. (2014). Fabrication of thermally conductive composite with surface modified boron nitride by epoxy wetting method. Ceramics International, 40 (4), 5181–5189. doi:10.1016/j.ceramint.2013.10.076
  10. Gladkikh, S. N., Kuznetsova, L. I., Naumova, L. I., Vyalov, A. I. (2009). Heat-conducting adhesives based on modified epoxy resins. Polymer Science. Series D, 2 (4), 238–242. doi:10.1134/s1995421209040108
  11. Shirshova, N., Bismarck, A., Greenhalgh, E. S., Johansson, P., Kalinka, G., Marczewski, M. J., Shaffer, M. S. P., Wienrich, M. (2014). Composition as a Means To Control Morphology and Properties of Epoxy Based Dual-Phase Structural Electrolytes. The Journal of Physical Chemistry C, 118 (49), 28377–28387. doi:10.1021/jp507952b
  12. Kats, E. A. (2008). Fullereny, uglerodnye nanotrubki i nanoklastery: Rodoslovnaia form i idei. Moscow: LKI, 296.
  13. Diachkov, P. N. (2006). Uglerodnye nanotrubki: stroenie, svoistva, primeneniia. Moscow: BINOM, Laboratoriia znanii, 293.
  14. Harris, P. J. F. (1999). Carbon Nanotubes and Related Structures: New Materials for the Twenty-first Century. Cambridge University Press, 279. doi:10.1017/cbo9780511605819
  15. Suhno, I. V., Buzko, V. Yu. (2008). Uglerodnye nanotrubki. Part 1. Vysokotehnologichnye prilozheniia. Krasnodar: KubGU, 55.
  16. Chernysh, I. H. (1994). Pryrodnyi hrafit ta materialy na yoho osnovi. Khimichna promyslovist Ukrainy, 4, 4–8.
  17. Melnyk, L. I., Volynets, R. P., Budya, D. О. (2010). Structure, physical and chemical properties of natural and reinforced graphites. Research Bulletin of NTUU «KPI», 6, 141–146.
  18. Melnyk, L. I., Budya, D. O., Vasylieva, O. O. (2012). Strumoprovidni kompozytsii na osnovi vuhletsevykh napovniuvachiv i epoksydnoho zviazuiuchoho. Tezy dopovidei VI Mizhnarodnoi naukovo-tekhnichnoi web-konferentsii «Kompozytsiini materialy». Kyiv, 165–167.
  19. Tsurul, M. F., Kharkov, Ye. Y., Matsui, L. Yu., Vovchenko, L. L., Morozovska, N. O. (16.07.2001). Method for obtaining metallized thermally expanded graphite. Patent of Ukraine № 40256, MPK С01В31/04. Appl. № 2000116217. Filed. 02.11.2000. Bull. № 6. Available: http://uapatents.com/3-40256-sposib-oderzhannya-metalizovanogo-termorozshirenogo-grafitu.html
  20. Kariakina, M. I. (1977). Laboratornyi praktikum po ispytaniiu lakokrasochnyh materialov i pokrytii. Moscow: Khimiia, 240.

Published

2017-05-30

How to Cite

Melnуk L. (2017). Research of electrical properties of epoxy composite with carbon fillers. Technology Audit and Production Reserves, 3(1(35), 28–34. https://doi.org/10.15587/2312-8372.2017.104807

Issue

Section

Materials Science: Original Research