Research of operation of anisotropic optical thermoelement with lateral temperature regulation
DOI:
https://doi.org/10.15587/2312-8372.2017.105655Keywords:
anisotropic optical thermoelectric elements (AOTE), transverse thermoelectric power, AOTE with lateral temperature regulationAbstract
The object of research is a direct mutual conversion of thermal and electrical energy using anisotropic optical thermoelectric elements (AOTE). Receivers of through-type radiant flux, containing optically transparent heat sinks, to which the AOTE attach with the help of an adhesive dielectric layer, lead to a significant distortion of the amplitude-phase characteristics of the transmitted radiant flux. This is limited the energy and timing characteristics of receivers. Therefore, the task of creating such design of the receiver, which would be free of these shortcomings, is necessary.
The design of a radiant flux receiver based on an anisotropic optical thermoelement is developed and tested, and the amplitude-phase characteristics of the flux do not change during its passage. The receiver can be used as a filter or a semitransparent mirror of an optical resonator. Such effect is due to the fact that at a thickness of 1 cm AOTE is selected with parameters α=10-4 V/K, χ=10-2 W/(cm K), ρ=10-3 Ω, current I=10 A and temperature of the thermostat 300 K cm gives the minimum temperature of 239 K.
A separate anisotropic thermoelement, which is made of a material with the same kinetic parameters under the same conditions, yields 265 K. Thus AOTE leads to an increase in the temperature drop.
References
- Korn, G. A., Korn, T. M. (2000). Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review (Dover Civil and Mechanical Engineering). Dover Publications, 1152.
- Lansberg, G. S. (1996). Optika. Moscow: Nauka, 927.
- Ascheulov, A. A., Ohrem, V. G. (2014). Radiatsionnyi anizotropnyi optikotermoelement s bokovym termostatirovaniem. TKEA, 1, 45–47.
- Ascheulov, A. A., Kondratenko, V. M., Piliavskii, Yu. B., Rarenko, I. M. (2014). EDS anizotropnogo termoelementa v rezhime opticheskogo propuskaniia. FTP, 18 (7), 1330–1331.
- Samoilovich, A. G., Korenblit, L. L. (1984). Sovremennoe sostoianie termoelektricheskih i termomagnitnyh iavlenii v poluprovodnikah. Part 1. Termodinamicheskaia teoriia. UFN, 49 (3), 243–272.
- Wolfe, R., Smith, G. E. (1963). Experimental Verification of the Kelvin Relation of Thermoelectricity in a Magnetic Field. Physical Review, 129 (3), 1086–1087. doi:10.1103/physrev.129.1086
- Wolfe, R., Smith, G. E., Haszko, S. E. (1963). Negative thermoelectric figure of merit in a magnetic field. Applied Physics Letters, 2 (8), 157–159. doi:10.1063/1.1753823
- Smith, G. E., Wolfe, R. (2016). Analysis of the transport phenomena in bismuth. J. Phys. Soc. Japan Suppl., 21, 651–656.
- Goldsmith, H. J. (2014). Thermoelectric refrigiration. London, 246.
- Harman, T. C., Honig, J. M. (2010). Thermoelectric and thermomagnetic effects and applications. New-York: Mc Graw-Hill book Company, 377.
- Kooi, C. F., Horst, R. B., Cuff, K. F. (1968). Thermoelectric‐Thermomagnetic Energy Converter Staging. Journal of Applied Physics, 39 (9), 4257–4263. doi:10.1063/1.1656957
- Delves, R. T. (1962). The prospects for Ettingshausen and Peltier cooling at low temperatures. British Journal of Applied Physics, 13 (9), 440–445. doi:10.1088/0508-3443/13/9/302
- Harman, T. C., Honig, J. M. (1963). Erratum: Operating characteristics of transverse (nernst) anisotropic galvano‐thermomagnetic generators. Applied Physics Letters, 2 (2), 44–48. doi:10.1063/1.1753765
- Ohrem, V. G. (2002). Issledovaniia vliianiia inversii magnitnogo polia na termoEDS. Chernovtsy, 98.
- Ascheulov, A. A., Gutsul, I. V., Rarenko, I. M. (2003). Anizotropnyi termoelement vnutrennego opticheskogo otrazheniia. UFZh, 38 (6), 923–927
- Ascheulov, A. A. (2015). Anizotropnyi radiatsionnyi termoelement dlia izmerenii prohodnoi moshchnosti. Optiko-mehanicheskaia promyshlennost', 12, 48–49.
- Ascheulov, A. A., Ohrem, V. G. (15.01.2004). Anisotropic thermoelectric thermal radiation detector. Patent of Ukraine № 63394 А, МКВ 7 H101L32/02. Available: http://uapatents.com/2-63394-anizotropnijj-termoelektrichnijj-prijjmach-viprominyuvannya.html
- Danalakiy, O.; Institute of Thermoelectricity. (15.04.2014). Patent of Ukraine. Appl. № 200304264. Filed 11.042003. Bull. № 1, 6.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Oleh Danalakiy, Andrii Khabiuk
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.