Investigation of the influence of organomineral additives on the colloid-chemical properties of geocement dispersion

Authors

  • Sergii Guzii V. D. Glukhovsky Scientific Research Institute for Binders and Materials, Kyiv National University of Construction and Architecture, Povitroflotskyj Avenue 31, Kyiv, Ukraine, 03037, Ukraine https://orcid.org/0000-0003-0147-5035

DOI:

https://doi.org/10.15587/2312-8372.2017.105678

Keywords:

geocement dispersion, optimization of organomineral additive composition, colloid-chemical properties

Abstract

The object of research is the geocement dispersion of the heulandite-clinoptilolite composition of the structural formula Na2O×Al2O3×6SiO2×20H2O, modified with an organomineral additive

The results of the effect of an organomineral additive on the colloidal-chemical properties of geocement dispersion are presented. Mathematical models that characterize the effect of the concentrations of constituent organomineral additives on changes in its basic physical and colloidal chemical properties are obtained:

– conventional viscosity;

– density;

– wetting angle;

– surface tension;

– works of adhesion, cohesion and wetting of geocement dispersions,

factors X1 ... X3 have an influence that are significant. Also, the joint effect of factors, respectively, x1x2x3, x1x2, x1x2 and x1x3 has a significant effect.

The coefficients of wetting and spreading of geocement dispersions are significantly influenced only by the joint action of the factors x1x2x3.

Relationship is established between the conditional viscosity and the wetting coefficient, between the wetting angle, adhesion, wetting and spreading work and between the density, surface tension and work of cohesion. The composition of the organomineral additive is optimized and the areas of permissible concentrations of its constituents are determined:

– along the X1 axis, 2–2.3 % of polymer RI-551Z;

– along the X2 axis, 2.1–2.5 % of microcalcite;

– along the X3 axis, 4.5–6.5 % of aluminate cement, which, when introduced into a geocement dispersion, allows Na2O×Al2O3×6SiO2×20H2O to stabilize its colloidal-chemical properties.

It is determined that the changes in the values of the other output parameters are tied to the change:

– the conditional viscosity and their values are in the following limits:

r=1.571–1.766 g/cm3, cosQ=0.50–0.67;

– surface tension s=114–128 mN/m;

– works of adhesion, wetting and cohesion, respectively, 184–204 mN/m;

– coefficients of wetting and spreading -0.77–(-)0.84, -37–(-)55 mN/m.

Author Biography

Sergii Guzii, V. D. Glukhovsky Scientific Research Institute for Binders and Materials, Kyiv National University of Construction and Architecture, Povitroflotskyj Avenue 31, Kyiv, Ukraine, 03037

PhD, Senior Researcher

References

  1. Geopolymers. Developments in Porous, Biological and Geopolymer Ceramics, 321–336. doi:10.1002/9780470339749.ch29
  2. Korneev, V. I., Brykov, A. S. (2010). Perspektivy razvitiia obshchestroitel'nyh viazhushchih veshchestv. Geopolimery i ih otlichitel'nye osobennosti. Tsement i ego primenenie, 51–55.
  3. Shi, C., He, F., Fernandez-Jimenez, A., Krivenko, P., Palomo, V. (2012). Classification and characteristics of alkali-activated cement. Journal of The Chinese Ceramic Society, 1 (40), 69–75.
  4. Fernandez-Jimenez, A., Flores, E., Maltseva, O., Garcia-Lodeiro, I., Palomo, A. (2013). Hybrid alkaline cements. Part III. Durability and industrial applications. Romanian Journal of Materials, 43 (2), 195–200.
  5. Palomo, A., Krivenko, P., Garcia-Lodeiro, I., Kavalerova, E., Maltseva, O., Fernandez-Jimenez, A. (2014). A review on alkaline activation: new analytical perspectives. Materiales de Construccion, 64 (315), e022. doi:10.3989/mc.2014.00314
  6. Bernal, S. A., Provis, J. L. (2014). Durability of Alkali-Activated Materials: Progress and Perspectives. Journal of the American Ceramic Society, 97 (4), 997–1008. doi:10.1111/jace.12831
  7. Pacheco-Torgal, F., Labrincha, J., Leonelli, C., Palomo, A., Chindaprasit, P. (2014). Handbook of Alkali-Activated Cements, Mortars and Concretes. N.Y.: Springer, 852. doi:10.1016/c2013-0-16511-7
  8. Funke, H. L., Gelbrich, S., Kroll, L. (2016). An Alkali Activated Binder for High Chemical Resistant Self-Leveling Mortar. Open Journal of Composite Materials, 06 (04), 132–142. doi:10.4236/ojcm.2016.64013
  9. Krivenko, P., Drochytka, R., Gelevera, A., Kavalerova, E. (2014). Mechanism of preventing the alkali-aggregate reaction in alkali activated cement concretes. Cement and Concrete Composites, 45, 157–165. doi:10.1016/j.cemconcomp.2013.10.003
  10. Kryvenko, P., Cao, H. L., Weng, L. Q., Kаvalerova, Е. (2014). Mineralogical Aspects of Durable Geocement Matrix Formation – Role of Alkali. Advanced Materials Research, 1004-1005, 1523–1530. doi:10.4028/www.scientific.net/amr.1004-1005.1523
  11. Kryvenko, P., Volodymyr, K., Guzii, S. (2016). Influence of the ratio of oxides and temperature on the structure formation of alkaline hydro-aluminosilicates. Eastern-European Journal of Enterprise Technologies, 5(5(83)), 40–48. doi:10.15587/1729-4061.2016.79605
  12. Petránek, V., Krivenko, P., Petropavlovskiy, О., Guzii, S. (2014). Perlite Concrete Based on Alkali Activated Cements. Advanced Materials Research, 897, 280–283. doi:10.4028/www.scientific.net/amr.897.280
  13. Funke, H. L., Gelbrich, S., Kroll, L. (2016). An Alkali Activated Binder for High Chemical Resistant Self-Leveling Mortar. Open Journal of Composite Materials, 06 (04), 132–142. doi:10.4236/ojcm.2016.64013
  14. Hewayde, E., Nehdi, M., Allouche, E., Nakhla, G. (2006). Effect of geopolymer cement on microstructure, compressive strength and sulphuric acid resistance of concrete. Magazine of Concrete Research, 58 (5), 321–331. doi:10.1680/macr.2006.58.5.321
  15. Kriven, W. M., Gordon, M., Ervin, B. L., Reis, H. (2008). Corrosion Protection Assessment of Concrete Reinforcing Bars with a Geopolymer Coating. Developments in Porous, Biological and Geopolymer Ceramics, 373–381. doi:10.1002/9780470339749.ch33
  16. http://www.worldcat.org/search?q=au%3AGupta+A.&qt=hot_author">Gupta, A., http://www.worldcat.org/search?q=au%3AMandal+S.&qt=hot_author">Mandal, S., http://www.worldcat.org/search?q=au%3AGhosh+S.&qt=hot_author">Ghosh, S. (2012). Durability of geopolymer coated recycled aggregate concrete exposed to Sulphuric acid. International Journal of Applied Engineering Research, 7 (1), 91–103.
  17. Siti Salwa, M. S., Mustafa Al Bakri, A. M. (2013). Review on Current Geopolymer as a Coating Material. Australian Journal of Basic and Applied Sciences, 7 (5), 246–257.
  18. Shaikh, F. U. A. (2014). Effects of alkali solutions on corrosion durability of geopolymer concrete. Advances in Concrete Construction, 2 (2), 109–123. doi:10.12989/acc.2014.2.2.109
  19. Kryvenko, P., Guzii, S., Kovalchuk, O., Kyrychok, V. (2016). Sulfate Resistance of Alkali Activated Cements. Materials Science Forum, 865, 95–106. doi:10.4028/www.scientific.net/msf.865.95
  20. Krivenko, P. V., Guziy, S. G., Kyrychok, V. I. (2014). Geocement-Based Coatings for Repair and Protection of Concrete Subjected to Exposure to Ammonium Sulfate. Advanced Materials Research, 923, 121–124. doi:10.4028/www.scientific.net/amr.923.121
  21. Krivenko, P. V., Guziy, S. G. (2013). Aluminosilicate coatings with enhanced heat- and corrosion resistance. Applied Clay Science, 73, 65–70. doi:10.1016/j.clay.2012.10.010
  22. Krivenko, P., Guziy, S., Al-Musaedi, H. A. J. (2015). Atmospheric Corrosion Protection of Metallic Structures Using Geocements-Based Coatings. Solid State Phenomena, 227, 239–242. doi:10.4028/www.scientific.net/ssp.227.239
  23. Guzii, S., Al Moussa, J. H. A. (2016). Investigation of adhesive properties of barrier-type geocement-based coatings. Technology Audit and Production Reserves, 4(4(30)), 13–17. doi:10.15587/2312-8372.2016.76515
  24. Glad, E. (2013). Porosity control of alkali-activated aluminosilicates via functional alkoxysilane additives. Urbana: College of the University of Illinois at Urbana-Champaign, 156.
  25. Musil, S. (2014). Novel, Inorganic Composites using Porous, Alkali-activated, Aluminosilicate Binders. Illinois: University of Illinois at Urbana-Champaign, 188.
  26. Yuan, Y., Lee, T. R. (2013). Contact Angle and Wetting Properties. Springer Series in Surface Sciences, 3–34. doi:10.1007/978-3-642-34243-1_1
  27. Antonova, N. M. (2011). Otsenka adgezionnoi prochnosti zashchitnyh kompozitsionnyh pokrytii po rabote adgezii k tverdomu telu ishodnoi suspenzii. Korroziia: materialy, zashchita, 9, 36–42.
  28. Bogdanov, V. N., Vorontsova, O. A., Vezentsev, A. I. (2013). Kolloidno-himicheskie svoistva neotverzhdennoi kompozitsii zashchitno-dekorativnogo pokrytiia. Lakokrasochnye materialy i ih primenenie, 1-2, 62–65.
  29. Fridrihsberg, D. A. (1984). Kurs kolloidnoi himii. Leningrad: Himiia, 368.
  30. In: Frolov, Yu. G., Grodskoy, A. S. (1986). Laboratornye raboty i zadachi po kolloidnoi himii. Moscow: Himiia, 216.
  31. Katalog oborudovaniia CZL. Available: https://www.czl.ru/applications/contact-angle-measurement-technology/

Published

2017-05-30

How to Cite

Guzii, S. (2017). Investigation of the influence of organomineral additives on the colloid-chemical properties of geocement dispersion. Technology Audit and Production Reserves, 3(1(35), 38–43. https://doi.org/10.15587/2312-8372.2017.105678

Issue

Section

Materials Science: Original Research