Investigation of the functioning of a vortex tube in supply of disperse flow (gas – dust particles) to the tube
DOI:
https://doi.org/10.15587/2312-8372.2017.109172Keywords:
dry purification of exhaust gases from aerosol, Rank effect, exhaust tubeAbstract
The process of dry dust removal of exhaust gases from the production of zinc white after melting furnaces of metallic zinc in a vortex tube under aerodynamic conditions is studied, which leads to the occurrence of Rank effect. It is proved that the behavior of the gas-dispersed flow under investigation during flow in a vortex tube is the same as for a gas flow without an aerosol. It is experimentally established that agglomeration of aerosol particles due to high-speed collisions of particles is observed in the vortex tube in the zone of quasi-solid rotation, where the most intense redistribution of energy and temperature is observed. The resulting agglomerates are almost 10 times larger than the dust particles that are fixed at the inlet to the vortex tube. The purification efficiency achieved is 97.8–99.9 %, depending on the gas flow rate at the inlet to the tube. The possibility of catalytic destruction of gas impurities (CO, NOx, SO2) is proved when adding water vapor to the gas flow at the inlet of the tube as a catalyst. The dependence of the vortex tube utilization efficiency as a separator on various factors is studied. It is proved that in the vortex tubes, in comparison with the existing centrifugal cyclone ЦН-11, a significant (up to 6–9 %) increase in the efficiency of fine dust collection in the proposed dust-purification system. This opens up prospects for the introduction of vortex tubes and vortex chambers and helps to reduce the industrial negative impact on the atmosphere.
References
- Zlygostev, A. S. (2010). Metody ochistki i obezvrezhivaniia ventiliatsionnyh i tehnologicheskih vybrosov. Zelenaia planeta, 20. Available: http://ecologylib.ru/
- Chekalov, L. V. (2004). Zashchita atmosfernogo vozduha ot vybrosov pyli, aerozolei i tumanov. Yaroslavl: Rus, 424.
- Zaretskii, A. D., Ivanova, T. E. (2014). Promyshlennye tehnologii i innovatsii. St. Petersburg: Piter, 480.
- Batluk, V. A., Basov, M. V. et al. (2009). Zalezhnist efektyvnosti pylovlovlennia vidtsentrovo-inertsiinykh aparativ vid konstruktsii bunkera. Promyslova hidravlika i pnevmatyka, 3 (25), 40−43.
- Batluk, V. A., Melniko, O. V., Mirus, O. V. (2011). Zalezhnist efektyvnosti pylovlovlennia vidtsentrovo-inertsiinykh aparativ vid konstruktsii bunkera. Promyslova hidravlika i pnevmatyka, 2 (32), 44−47.
- Liapkov, A. A., Ionova, E. I. (2008). Tehnika zashchity okruzhaiushchei sredy. Ed. 2. Tomsk: Tomsk Polytechnic University, 317.
- Aslamova, V. S., Zhabei, A. A. (2010). Avtomatizirovannaia sistema issledovaniia tsiklonov i skrubberov. Izvestiia Tomskogo politehnicheskogo universiteta. Inzheniring georesursov, 3016 (1), 71−76.
- Kutepov, A. M., Latkin, A. S. (1999). Vihrevye protsessy dlia modifikatsii dispersnyh sistem. Moscow: Nauka, 270.
- Gao, J., Xu, C., Lin, S., Yang, G., Guo, Y. (2001). Simulations of gas-liquid-solid 3-phase flow and reaction in FCC riser reactors. AIChE Journal, 47 (3), 677–692. doi:10.1002/aic.690470315
- Veretennikov, S. V., Barinov, S. N. (2015). Experimental investigation of heat transfer in energy separation chambers of the vortex tube. VESTNIK of the Samara State Aerospace University, 14 (2), 44–51. doi:10.18287/2412-7329-2015-14-2-44-51
- Luo, G., Li, R., Zhou, L. (2000). Numerical simulation of gas-particle flows with different swirl numbers in a swirl burner. Tsinghua Science and Technology, 5 (1), 96−99.
- Deich, M. E. (1974). Tehnicheskaia gazodinamika. Ed. 3. Moscow: Energiia, 592.
- Molochko, F. I. (2015). O sushchnosti vihrevogo effekta Ranka-Hil'sha. Problemy zahalnoi enerhetyky, 4 (43), 58–60.
- Burov, O. O., Burov, A. I., Vinogradenko, L. V. (2014). Dedusting gas emissions drying plant. Ahrarnyi visnyk Prychornomoria, 74, 140–143.
- Maslov, V. E. (1977). Pylekontsentratory v topochnoi tehnike. Moscow: Energiia, 285.
- Piralishvily, S. A., Veretennikov, S. V. (2011). Vortex effect and intensification of heat and mass transfer in cell energy technology. VESTNIK Of Samara University. Aerospace And Mechanical Engineering, 3–1 (27), 241−247.
- Pitak, I. V. (2010). Issledovanie mokrogo protsessa ulavlivaniia pyli v rotornom vihrevom apparate. Bulletin of the National Technical University «KhPI» Series: New solutions in modern technologies, 17, 135−140.
- Civan, F. (2016). Reservoir Formation Damage. Elsevier, 1042. doi:10.1016/c2014-0-01087-8
- Karapetiants, M. H. (1975). Himicheskaia termodinamika. Moscow: Himiia, 584.
- Pitak, I. V., Troshyn, O. H., Moiseiev, V. F., Shaporev, V. P. (11.02.2008). Rotary mass-exchange apparatus. Patent UA 29985 U, МПК (2006) B01D 3/00. Appl. No. u200708025. Filed 16.07.2007. Available: http://uapatents.com/2-29985-rotornijj-masoobminnijj-aparat.html
- Tovazhnianskyi, L. L., Shaporev, V. P., Pitak, I. V. et al. (2011). Mashyny i aparaty u khimichnykh, kharchovykh i pererobnykh vyrobnytstvakh. Kharkiv: Kolehium, 610.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Serhii Briankin, Valery Shaporev, Inna Pitak, Oleg Pitak
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.