Investigation of the treatment efficiency of fine-dispersed slime of a water rotation cycle of a metallurgical enterprise

Authors

DOI:

https://doi.org/10.15587/2312-8372.2017.112791

Keywords:

gas treatment of metallurgical enterprise, fine-dispersed slimes, gas treatment slimes, treatment module

Abstract

The features of the water rotation cycle and the slime treatment system of the oxygen-converter shop of metallurgical production are investigated. During the audit, it is revealed that the concentration of suspended solids in the water cycle system varies in time up to 500 g/l for the condensed slime and up to 85 g/l in the pre-clarified water. It is established that the slimes of the metallurgical enterprise contain a finely dispersed solids fraction in the slime up to 93 % of a size of less than 20 μm and the residues of a cationic flocculant that impede effective treatment of the slime in the sedimentation tanks. This leads to the following drawbacks: a decrease in the slime treatment efficiency, removal of the fine fraction of solids together with clarified water of radial thickeners, regular replenishment of clean water, discharge of part of the flow into the slime collector. It is proposed to install an additional treatment module and use a more efficient anionic flocculant. It is recommended to monitor the efficiency of treatment and dosing of the flocculant depending on the solids concentration in the slime by continuous sampling and testing of slime flocculation. It is established that effective treatment up to 99 % can be achieved on the treatment module using anionic flocculant, thin-layer sedimentation tanks and sedimentation horizontal screw centrifuges.

Author Biographies

Andrii Shkop, LTD «Scientific and Technical Center «Есomash», Moskovsky ave., 299, Kharkiv, Ukraine, 61089

PhD, Director

Oleksandr Briankin, National Technical University «Kharkiv Polytechnic Institute», 2, Kyrpychova str., Kharkiv, Ukraine, 61002

Postgraduate Student

Department of Chemical Technique and Industrial Ecology

Oleksіi Shestopalov, National Technical University «Kharkiv Polytechnic Institute», 2, Kyrpychova str., Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Chemical Technique and Industrial Ecology

Natalya Ponomareva, National Technical University «Kharkiv Polytechnic Institute», 2, Kyrpychova str., Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Integrated Technologies, Processes and Devices

References

  1. Melnikov, I. T., Kutlubaev, I. M., Putalev, I. A., Shevtcov, N. S., Vasiluev, K. P. (2013). Investigation of sludge thickening for mining and metallurgical production. Scientific World, 14 (3), 18–25.
  2. Radovic, N., Kamberovic, Z., Panias, D. (2009). Cleaner metallurgical industry in Serbia: A road to the sustainable development. Chemical Industry and Chemical Engineering Quarterly, 15 (1), 1–4. doi:10.2298/ciceq0901001r
  3. Kovalenko, A. (2012). About gas purification sludges of domain and steel-smelting manufactures. Eastern-European Journal of Enterprise Technologies, 2(12 (56)), 4–8. Available at: http://journals.uran.ua/eejet/article/view/3919/3587
  4. Shkop, A., Tseitlin, M., Shestopalov, O., Raiko, V. (2017). Research of ways to reduce mechanical influence on floccules in a centrifuge. Technology Audit and Production Reserves, 1(3 (33)), 39–45. doi:10.15587/2312-8372.2017.93690
  5. Atamaniuk, A. A., Kasimov, A. M. (2012). K voprosu sgushcheniia suspenzii zhelezosoderzhashchih vzvesei stochnyh vod metallurgicheskogo kombinata «Zaporozhstal». Metallurgicheskaia i gornorudnaia promyshlennost, 5 (227), 95–97.
  6. Sulimova, M. A., Litvinova, T. E. (2016). Мetallurgical production waste treatment efficiency increase. 16th International Multidisciplinary Scientific GeoConference SGEM 2016, Conference Proceedings, 2, 569–576.
  7. Sun, Y. Y., Xu, C. Y., Nie, R. C., Zheng, J. H. (2013). Application of Flocculant and Coagulant to Coal Slime Water. Advanced Materials Research, 781-784, 2170–2173. doi:10.4028/www.scientific.net/amr.781-784.2170
  8. Tripathy, T., De, B. R. (2006). Flocculation: A New Way to Treat the Waste Water. Journal of Physical Sciences, 10, 93–127.
  9. Bolto, B., Gregory, J. (2007). Organic polyelectrolytes in water treatment. Water Research, 41 (11), 2301–2324. doi:10.1016/j.watres.2007.03.012
  10. Heller, H., Keren, R. (2002). Anionic Polyacrylamide Polymers Effect on Rheological Behavior of Sodium-Montmorillonite Suspensions. Soil Science Society of America Journal, 66 (1), 19. doi:10.2136/sssaj2002.0019
  11. Wang, W.-D., Wang, H.-F., Sun, J.-T., Sun, Y. (2013). Experimental study on slime water flocculation sediment based on the montmorillonite hydration expansion inhibition. Journal of Coal Science and Engineering (China), 19 (4), 530–534. doi:10.1007/s12404-013-0414-y
  12. Lopez-Maldonado, E. A., Oropeza-Guzman, M. T., Ochoa-Teran, A. (2014). Improving the Efficiency of a Coagulation-Flocculation Wastewater Treatment of the Semiconductor Industry through Zeta Potential Measurements. Journal of Chemistry, 2014, 1–10. doi:10.1155/2014/969720
  13. Petzold, G., Mende, M., Lunkwitz, K., Schwarz, S., Buchhammer, H.-M. (2003). Higher efficiency in the flocculation of clay suspensions by using combinations of oppositely charged polyelectrolytes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 218 (1-3), 47–57. doi:10.1016/s0927-7757(02)00584-8
  14. Shkop, A., Tseitlin, M., Shestopalov, O. (2016). Exploring the ways to intensify the dewatering process of polydisperse suspensions. Eastern-European Journal of Enterprise Technologies, 6(10 (84)), 35–40. doi:10.15587/1729-4061.2016.86085
  15. Shkop, A., Tseitlin, M., Shestopalov, O., Raiko, V. (2017). Study of the strength of flocculated structures of polydispersed coal suspensions. Eastern-European Journal of Enterprise Technologies, 1(10 (85)), 20–26. doi:10.15587/1729-4061.2017.91031
  16. Konduri, M. K. R., Fatehi, P. (2017). Influence of pH and ionic strength on flocculation of clay suspensions with cationic xylan copolymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 530, 20–32. doi:10.1016/j.colsurfa.2017.07.045

Published

2017-09-21

How to Cite

Shkop, A., Briankin, O., Shestopalov, O., & Ponomareva, N. (2017). Investigation of the treatment efficiency of fine-dispersed slime of a water rotation cycle of a metallurgical enterprise. Technology Audit and Production Reserves, 5(3(37), 22–29. https://doi.org/10.15587/2312-8372.2017.112791

Issue

Section

Ecology and Environmental Technology: Original Research