Analysis and development of compromise solutions in multicriteria transport tasks
DOI:
https://doi.org/10.15587/2312-8372.2017.118338Keywords:
multicriteria transport problem, iterative solution, method of consecutive concessions for obtaining a compromise solutionAbstract
The object of research is the multicriteria transport problem of linear programming. Simultaneous consideration of several criteria is a problematic problem, since the optimal solutions for different criteria do not coincide. The possible solution of the problem is investigated – finding a way to obtain a compromise solution. Based on the results of the analysis of known methods for solving multicriteria problems (Pareto-set formation, scalarization of the vector criterion, concessions method), the last is justified. To implement the method, an iterative procedure is suggested, in which the initial plan is optimal according to the main criterion. At subsequent iterations, an assignment is made to the main criterion in order to improve the values of the additional criteria. The solution of the problem is continued until a compromise solution is obtained, ensuring the best value for the main criterion, provided that the values for the remaining criteria are no worse than those given. Important advantages of the proposed method: the simplicity of the computational procedure, the grounded technology of forming a new solution at each iteration, realizing the concept of assignment, quality control of the solution obtained at each step. The application of the proposed method opens the prospect of its generalization to the case when the initial data for the solution of the problem contain uncertainty.
References
- Yudin, D. B., Golshtein, E. G. (1969). Zadachi lineinogo programmirovaniia transportnogo tipa. Moscow: Nauka, 384.
- Sira, O. V. (2010). Mnogomernye modeli logistiki v usloviiah neopredelennosti. Kharkiv: FOP Stetsenko I. I., 512.
- Raskin, L. G., Kirichenko, O. I. (1982). Mnogoindeksnye zadachi lineinogo programmirovaniia. Moscow: Radio i sviaz, 240.
- Steuer, R. (1986). Multiple Criteria Optimization: Theory, Computation and Application. New York: John Wiley, 546.
- Savaragi, Y., Nakayama, H., Tanin, T. (1985). Theory of Multiobjective Optimization. Orlando: Academic Press Inc., 296.
- Keeney, R. L., Raiffa, H. (1993). Decisions with Multiple Objectives. Cambridge University Press, 570. doi:10.1017/cbo9781139174084
- Ehrgott, M. (2005). Multicriteria Optimization. Heidelberg: Springer, 323. doi:10.1007/3-540-27659-9
- Craft, D. L., Halabi, T. F., Shih, H. A., Bortfeld, T. R. (2006). Approximating convex Pareto surfaces in multiobjective radiotherapy planning. Medical Physics, 33 (9), 3399–3407. doi:10.1118/1.2335486
- Lotov, A. V., Pospelova, I. I. (2008). Mnogokriterial'nye zadachi priniatiia reshenii. Moscow: MAKS Press, 197.
- Intrillitator, M. (2002). Matematicheskie metody optimizatsii i ekonomicheskaia teoriia. Moscow: Antris-press, 553.
- Cohon, J. L. (2004). Multiobjective Programming and Planning. New York: Dover Publ, 352.
- Luque, M., Ruiz, F., Miettinen, K. (2008). Global formulation for interactive multiobjective optimization. OR Spectrum, 33 (1), 27–48. doi:10.1007/s00291-008-0154-3
- Panda, S. (2009). Multi-objective evolutionary algorithm for SSSC-based controller design. Electric Power Systems Research, 79 (6), 937–944. doi:10.1016/j.epsr.2008.12.004
- Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8 (3), 338–353. doi:10.1016/s0019-9958(65)90241-x
- Negoitse, K. (1981). Primenenie teorii sistem k problemam upravleniia. Moscow: MIR, 219.
- Orlovskii, S. A. (1981). Problemy priniatiia reshenii pri nechetkoi informatsii. Moscow: Nauka, 264.
- Diubua, D., Prad, A. (1990). Teoriia vozmozhnostei. Prilozhenie k predstavleniiu znanii v informatike. Moscow: Radio i sviaz, 286.
- Raskin, L. G., Sira, O. V. (2008). Nechetkaia matematika. Osnovy teorii. Prilozheniia. Kharkiv: Parus, 352.
- Raskin, L., Sira, O. (2016). Method of solving fuzzy problems of mathematical programming. Eastern-European Journal of Enterprise Technologies, 5 (4 (83)), 23–28. doi:10.15587/1729-4061.2016.81292
- Pawlak, Z. (1982). Rough sets. International Journal of Computer & Information Sciences, 11 (5), 341–356. doi:10.1007/bf01001956
- Raskin, L., Sira, O. (2016). Fuzzy models of rough mathematics. Eastern-European Journal of Enterprise Technologies, 6 (4 (84)), 53–60. doi:10.15587/1729-4061.2016.86739
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Yurii Parfeniuk, Lev Raskin, Oksana Sira
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.