Research of mineralogical composition, structure and properties of the surface of Ukrainian ash microspheres

Authors

DOI:

https://doi.org/10.15587/2312-8372.2017.118958

Keywords:

ash microspheres, specific surface, mineralogical composition, powdery material, amorphous phase

Abstract

The progressive trend in material-intensive industries is the use of industrial waste as raw materials suitable for the industrial industry. One of such wastes is ash microspheres, which are a by-product of the operation of solid-fuel thermal power stations. Comparison of the properties of the ash microspheres of different manufacturers by their physicochemical, morphological, dielectric and other properties allows to comprehensively evaluate each sample of the material. On the basis of this evaluation, it is possible to select the assignment of ash microspheres, which would maximally effectively use their potential in the composition of the composite material. For the study, ash microspheres obtained at various TPSs of Ukraine: Trypillia, Burshtyn, Kurakhove, Kryvyi Rig and Prydniprovska are selected.

As a result of studies of the mineralogical composition, structure and properties of ash microspheres, it is found that the latter are a high-temperature material with a high temperature resistance. The specific surface of the ash microspheres is comparatively small and depends, in the main, on the mineral constituent of the coal rock. Thus, for the investigated materials the effective specific surface area varies within the limits of 1.7–2.3 m2/g.

As for the mineralogical composition, the predominant crystallophase is represented, mainly mullite (91–98 %). An exception in this case is the ash microspheres of the Kurakhove TPS, in which mullite is 43 %. Also, a significant proportion of the mineralogical composition of the ash microspheres of the Kurakhove TPS is opal cristobalite (37 %).

Also, the thermal conductivity of ash microspheres of selected TPSs in Ukraine is investigated. The highest coefficient of thermal conductivity is the ash microspheres obtained from the Trypillia and Burshtyn TPSs (0.190 and 0.184 W/(m·K), respectively), and the lowest – Prydniprovska TPS.

Ash microspheres serve as a promising material both from the point of view of processing coal waste and from the point of view of using it as filler for building materials with increased thermal insulation properties. From this it follows that ash microspheres allow to significantly expand the scope of their use, including in the construction industry.

Author Biographies

Valentynа Demchenko, Kyiv National University of Trade and Economics, 19, Kyoto str., Kyiv, Ukraine, 02156

Postgraduate Student

Department of Commodity and Customs Affairs

Olena Simyachko, Kyiv National University of Trade and Economics, 19, Kyoto str., Kyiv, Ukraine, 02156

PhD, Associate Professor

Department of Commodity and Customs Affairs

Valentin Svidersky, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Peremohy ave., Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor, Head of the Department

Department of Chemical Technology of Composite Materials

References

  1. Chumakov, L. D. (2006). Tehnologiia zapolnitelei betona (praktikum). Moscow: ASV, 48.
  2. Danilovich, I. Yu., Skanavi, N. A. (1988). Ispol'zovanie toplivnyh shlakov i zol dlia proizvodstva stroitel'nyh materialov. Moscow: Vysshaia shkola, 72.
  3. Haluschak, M. O., Ralchenko, V. G., Tkachuk, A. I., Freik, D. M. (2013). Methods of Measuring the Thermal Conductivity of Bulk Solids and Thin Films (Review). Physics and Chemistry of Solid State, 14 (2), 317–345. Available at: http://www.pu.if.ua/inst/phys_che/start/pcss/vol14/1402-03.pdf
  4. Pashchenko, A. A., Voronkov, M. G., Krupa, A. A., Svidersky, V. A. (1977). Gidrofobnyi vspuchennyi perlit. Kyiv: Naukova dumka, 204.
  5. Kochergin, C. M. (2006). Betony. Materialy. Tehnologii. Oborudovanie. Moscow: Stroiinform; Rostov na Donu: Feniks, 424.
  6. In: Kats, G. S., Milevski, D. V. (1981). Napolniteli dlia polimernyh kompozitsionnyh materialov. Moscow: Khimiia, 736.
  7. Teriaeva, T. N., Kostenko, O. V., Ismagilov, Z. R., Shikina, N. V., Rudina, N. A., Antipova, V. A. (2013). Fiziko-himicheskie svoistva aliumosilikatnyh polyh mikrosfer. Vestnik Kuzbasskogo gosudarstvennogo tehnicheskogo universiteta, 5 (99), 86–90.
  8. Landel, R. F., Nielsen, L. E. (1993). Mechanical Properties of Polymers and Composites, Second Edition. CRC Press, 580.
  9. Mironyuk, I. F. (2000). The Scientific Principles of Controlled Synthesis of Fumed Silica and its Physico-Chemical Properties. Kyiv: The Institute for Surface Chemistry of the National Academy of Sciences of Ukraine, 46.
  10. Barthel, H., Rosch, L., Weis, J. (1996). Fumed Silica – Production, Properties, and Applications. Organosilicon Chemistry II: From Molecules to Materials. Weinheim: VCH Verlagsgesellschaft mbH, 761–778. doi:10.1002/9783527619894.ch91
  11. Meyer, K., Shchukin, E. D., Summ, B. M. (1972). Fiziko-himicheskaia kristallografiia. Moscow: Metallurgiia, 480.
  12. Wang, Q., Wang, D., Chen, H. (2017). The role of fly ash microsphere in the microstructure and macroscopic properties of high-strength concrete. Cement and Concrete Composites, 83, 125–137. doi:10.1016/j.cemconcomp.2017.07.021
  13. Ivanov, M. G., Lihareva, O. B., Matern, A. I., Stoianov, O. V. (2017). Sorbtsiia formal'degida i tehnologiia polucheniia opoki, modifitsirovannoi silanom. Vestnik Kazanskogo tehnologicheskogo universiteta, 20 (12), 22–26.
  14. Bodnar, R. T. (2016). Ekspres-metod vyznachennia kraiovoho kuta zmochuvannia porystykh til. Metody ta prylady kontroliu yakosti, 1 (36), 30–38. Available at: http://elar.nung.edu.ua/bitstream/123456789/4256/1/5397p.pdf
  15. Dai, S., Li, W., Tang, Y., Zhang, Y., Feng, P. (2007). The sources, pathway, and preventive measures for fluorosis in Zhijin County, Guizhou, China. Applied Geochemistry, 22 (5), 1017–1024. doi:10.1016/j.apgeochem.2007.02.011
  16. Jow, J., Dong, Y., Zhao, Y., Ding, S., Li, Q., Wang, X., Lai, S. (2015). Fly Ash-based Technologies and Value-added Products Based on Materials Science. 2015 World of Coal Ash (WOCA) Conference in Nasvhille, May 5–7, 2015, 26. Available at: http://www.flyash.info/2015/047-jow-2015.pdf
  17. Liu, H., Sun, Q., Wang, B., Wang, P., Zou, J. (2016). Morphology and Composition of Microspheres in Fly Ash from the Luohuang Power Plant, Chongqing, Southwestern China. Minerals, 6 (2), 30. doi:10.3390/min6020030

Published

2017-11-30

How to Cite

Demchenko, V., Simyachko, O., & Svidersky, V. (2017). Research of mineralogical composition, structure and properties of the surface of Ukrainian ash microspheres. Technology Audit and Production Reserves, 6(1(38), 28–34. https://doi.org/10.15587/2312-8372.2017.118958

Issue

Section

Materials Science: Original Research