Influence of mechanical activation on curing processes of refractory concrete and its properties

Authors

  • Виктория Викторовна Песчанская National metallurgical academy of Ukraine Gagarin Avenue 4, Dnepropetrovsk, 49005, Ukraine
  • Анна Сергеевна Макарова National metallurgical academy of Ukraine Gagarin Avenue 4, Dnepropetrovsk, 49005, Ukraine
  • Ирина Валериевна Голуб National metallurgical academy of Ukraine Gagarin Avenue 4, Dnepropetrovsk, 49005, Ukraine

DOI:

https://doi.org/10.15587/2312-8372.2013.12241

Keywords:

low-cement corundum concrete, electric corundum, calcium aluminates cement, matrix component, mechanical activation, hardening kinetics properties

Abstract

Significant advantages of low-cement refractory concrete with low porosity, high mechanical strength, chemical resistance and thermal stability, and adaptability to the operating conditions in linings of thermal units determine the prospects for further increase in consumption of concrete and development of scientific bases of technology of its production. A promising method of creation of composite materials with an efficient structure and improved properties is the mechanical activation.

We have studied the effect of the mechanical activation of electric corundum and a matrix component of low-cement corundum concrete on the change of the morphology and physical properties of materials, hardening kinetics and properties of the concrete. It was determined that an increase in the duration of the mechanical activation of electric corundum has a significant impact on the change of acid-base balance of suspensions, reactivity of the matrix component and the rate of hardening of a paste.

The experimental research showed the possibility of use of the mechanical activation of components of the low-cement corundum concrete, as an effective way of directed control of activity of the matrix component, rate of cement hydration, formation of hydrogel and colloiding of cement phase, development of crystallization contacts between cement and aggregate particles that promote formation of an efficient structure and properties of refractory concrete.

Author Biographies

Виктория Викторовна Песчанская, National metallurgical academy of Ukraine Gagarin Avenue 4, Dnepropetrovsk, 49005

Associate professor

Department of Chemical Technology of Ceramics and Refractories

Анна Сергеевна Макарова, National metallurgical academy of Ukraine Gagarin Avenue 4, Dnepropetrovsk, 49005

Graduate student

Department of Chemical Technology of Ceramics and Refractories

Ирина Валериевна Голуб, National metallurgical academy of Ukraine Gagarin Avenue 4, Dnepropetrovsk, 49005

Associate professor

Department of Chemical Technology of Ceramics and Refractories

References

  1. Пивинский, Ю.Е. Неформованные огнеупоры нового поколения [Текст] / Ю.Е. Пивинский, О.Г. Усьяров // Новые огнеупоры. – 2006. – №1. – С. 35 – 41.
  2. Кащеев, И.Д. Неформованные огнеупоры [Текст] : справоч. изд. в 2 т. / И.Д. Кащеев, М.Г. Ладыгичев, В.Л. Гусовский. – М.: Теплотехник, 2004. – Т. 2: Свойства и применение неформованных огнеупоров. – 2004. – 440 с.
  3. Коваленко, В.В. Синергетичний ефект зростання міцності бетону внаслідок механоактивації цементу й заповнювача [Текст] / Коваленко В.В., Горобець Л.Ж. // Вестник Национального технического университета “Харьковский политехнический институт”. – 2008. – №38. – С. 113 – 118.
  4. Абрамов, М.А. Влияние механохимической активации на физико-химические свойства кварцевого песка и структурно-механические характеристики вяжущих композиций на его основе [Текст] / Абрамов М.А., Степанов Е.Г., Яблонский О.П. // Химия и химическая технология. – 2009. – т.52, вып. 8. – С. 75 –77.
  5. Болдырев В.В. Механохимия и механическая активация твердых ве-ществ [Текст] / В.В. Болдырев // Успехи химии. – 2006. – №75. – С. 203 – 216.
  6. Болдырев В.В. Фундаментальные основы механической активации, механосинтеза и механохимических технологий / Болдырев В.В и др.; отв.ред. Е.Г. Авакумов; Рос. Акад. наук, Сиб. отд.-ние; Ин-т химии твердого тела и механохимии. – Новосибирск : СО РАМН, 2009. – 343 с. – (Интеграционные проекты СО РАН; вып. 19)
  7. Прокофьев, В.Ю. Процессы измельчения и механохимической актива-ции в технологии оксидной керамики [Текст] / Прокофьев В.Ю., Гордина Н.Е. // Стекло и керамика – 2012. – №2. – С. 29 – 34.
  8. Косенко, Н.Ф. Синтез магнезиальноалюминатной шпинели из оксидов с различной предысторией [Текст] / Косенко Н.Ф., Смирнова М.А. // Огне-упоры и техническая керамика – 2011. – №9. – С. 3 – 11.
  9. Kong L.B. MgAl2O4 spine phase derived from oxide mixture activated by a high-energy ball milling process [Text] / Kong L.B., Ma J., Huang H. // Mater Lett. 2002. – V. 56. – N 3. – P. 238 – 243.
  10. Zhihui Zh. Influence of mechanical activation of Al2O3 on synthesis of magnesium aluminate spinel [Text] / Zhihui Zh., Nan L. // Sci. Sinter. 2004. – V. 36. – N 2. – P. 73 – 79.
  11. Domansi D. Mechanochemical synthesis of magnesium aluminate spinel powder at room temperature [Text] / Domansi D., Urretavizcaya G., Castro F.J. et.al // J. Amer. Ceram. Soc. 2004. – V. 87. – N 11. – P. 2020 – 2024.
  12. Pivinskii YU.E, Usyarov O.G. (2006) Neformovannye ogneupory novogo pokoleniya. Novye ogneupory, 1, 35 – 41.
  13. Kashcheev I.D., Ladygichev M.G., Gusovskii V.L. (2004) Neformovannye ogneupory: spravoch. izd. v 2 t. M.: Teplotekhnik, 2: Svojstva i primenenie neformovannykh ogneuporov, 440.
  14. Kovalenko V. V., Gorobets L.Zh. (2008) Synergetychnyi effect zrostanya mitsnosti betona vnaslidok mekhanoaktyvatsii. Vestnik Natsional'nogo tekhnicheskogo universiteta “Khar'kovskij politekhnicheskij institut”, 38, 113 – 118.
  15. Abramov M. A, Stepanov E.G., Yablonsky O.P. (2009) Vliyanie mekhanokhimicheskoyi aktyvatsii na fiziko-khimicheskie svojstva kvartsevogo peska i strukturno-mekhanicheskie kharakteristiki viazyushchikh kompozitsiyi na ego osnove. Chemistry and chemical technology, 52, 8, 75 – 77.
  16. Boldyrev V.V (2006) Mekhanokhimiia i mekhanicheskaia aktyvatsiia tverdykh vechestv. Achievements Chemistry, 75, 203 – 216.
  17. Boldyrev V.V et.al (2009) Fundamentalnue osnovu mekhanicheskoi aktyvatsii, mekhanosinteza i mekhanokhimicheskikh tekhnologii. Novosibirsk : SO RAMN, 343.
  18. Prokofiev V. YU, Gordina N.E. (2012) Processy izmelcheniya i mekhanicheskoyi aktyvatsii v tekhnologii oksidnoy keramiki. Glass and ceram-ics, 2, 29 – 34.
  19. Kosenko N.F., Smirnova M.A. (2011) Sintez magnezialnoalyuminatnoi shpineli iz oksidov s razlichnoi predistoriei. Refractories and technical ceramics, 9, 3 –11.
  20. Kong L.B., Ma J., Huang H. (2002) MgAl2O4 spine phase derived from oxide mixture activated by a high-energy ball milling process. Mater Lett, 56, 3, 238 – 243.
  21. Zhihui Zh., Nan L. (2004) Influence of mechanical activation of Al2O3 on synthesis of magnesium aluminate spinel. Sci. Sinter, 36, 2, 73 – 79.
  22. Domansi D., Urretavizcaya G., Castro F.J. et.al (2004) Mechanochemical synthesis of magnesium aluminate spinel powder at room temperature. J. Amer. Ceram. Soc, 87, 11, 2020 – 2024.

Published

2013-02-27

How to Cite

Песчанская, В. В., Макарова, А. С., & Голуб, И. В. (2013). Influence of mechanical activation on curing processes of refractory concrete and its properties. Technology Audit and Production Reserves, 1(2(9), 29–33. https://doi.org/10.15587/2312-8372.2013.12241