Development of theoretical and experimental dynamic monitoring of large-scale building structure

Authors

DOI:

https://doi.org/10.15587/2312-8372.2018.123463

Keywords:

dynamic monitoring, frequencies and forms of natural oscillations, finite element model

Abstract

The object of research is the method of monitoring and assessing the technical condition of the large-sized building structure of the International Exhibition Center (Kyiv, Ukraine). The currently applied method of monitoring this structure is based on the use of deformation indicators. The indicators of this method do not allow estimating the global technical state of the structure. Taking into account the social importance of the structure, it is possible to use dynamic monitoring while monitoring its technical condition.

In the course of the study, two independent finite element models of the controlled facility are developed in the SCAD (Russia) and NASTRAN (USA) software complexes. With their help, a modal analysis was made and the values of the frequencies and forms of the natural oscillations of the structure were determined. The natural measurements of its natural frequencies have been made. It is found that the difference between the calculated and natural values of natural frequencies does not exceed 3 %.

In addition, version of an automated experimental control system is proposed, which includes the use of three-component accelerometers MS2002+, Geoscop software, controlled by the operating system MS Server.

The received results testify to the efficiency of the use of frequencies and forms of natural oscillations in the system of monitoring the technical state of the given structure. In comparison with static deformation parameters, they allow estimating the global technical condition and determining the integrity of the structure.

Author Biographies

Viktor Gaidaichuk, Kyiv National University of Construction and Architecture, 31, Povitroflotsky аve., Kyiv, Ukraine, 03037

Doctor of Technical Sciences, Professor, Head of the Department

Department of Theoretical Mechanics

Konstantin Kotenko, Kyiv National University of Construction and Architecture, 31, Povitroflotsky аve., Kyiv, Ukraine, 03037

Postgraduate Student

Department of Theoretical Mechanics

Ihor Kedyk, SIXENSE Ukraine LLC, of. 702, 7, Vandy Vasylevskoyi str., Kyiv, Ukraine, 04116

Senior Engineer

References

  1. Laba, M.-L., Hastin, E. (04.05.2011). Systema sposterezhennia za peremishchenniam elementiv konstruktsii ta sporud. Patent ER 1 391 692 V1 France. MPK G01C 15/00 (2006.01). Appl. No. 92000. Filed: 11.08.2003. Bull. No. 2011/18.
  2. Doebling, S. W., Farrar, C. R., Prime, M. B., Shevitz, D. W. (1996). Damage identification and health monitoring of strucnural and mechanical system from chages in their vibration characteristics: a literature review. Report No. LA-13070-MS. Los Alamos: Los Alamos National Laboratore, 127. doi:10.2172/249299
  3. Shablinskii, G. E., Zubkov, D. A. (2009). Naturnye dinamicheskie issledovaniia stroitel'nyh konstruktsii. Moscow: Izdatel'stvo Assotsiatsii stroitel'nyh vuzov ASV, 216.
  4. Shablinskii, G. E., Zubkov, D. A. (2012). Naturnye i model'nye issledovaniya dinamicheskih yavlenii v stroitel'nyh konstrukciyah ehnergeticheskih i grazhdanskih obektov. Mosow: Izdatel'stvo MGSU, 483.
  5. Patrikeev, A. V., Salatov, E. K. (2013). Osnovy metodiki dinamicheskogo monitoringa deformatsionnyh harakteristik zdanii i sooruzhenii. Vestnik MGSU, 1, 133–138.
  6. Lengvarsky, P., Bocko, J. (2013). Theoretical Basis of Modal Analysis. American Journal of Mechanical Engineering, 1 (7), 173–179.
  7. Shablinskis, G. E. (2013). Monitoring unikal'nyh vysotnyh zdanii i sooruzhenii na dinamicheskie i seismicheskie vozdeistviya. Moscow: Izdatel'stvo Associacii stroitel'nyh vuzov ASV, 328.
  8. Patrikeev, A. V. (2014). Sistema dinamicheskogo monitoringa inzhenernogo sooruzheniya kak klyuchevoy element ego tekhnicheskoy bezopasnosti. Vestnik MGSU, 4, 133–140.
  9. Haidaichuk, V. V., Kotenko, K. E. (2016). Efektyvnist i problemy monitorynhu velykorozmirnykh budivelnykh sporud. Opir materialiv i teoriia sporud, 97, 163–173.
  10. Savin, S. N. (2012). Dinamicheskiy monitoring stroitel'nykh konstruktsiy na primere kinokontsertnogo zala «Pushkinskiy» v g. Moskve. Inzhenerno-stroitel'nyy zhurnal, 7 (33), 58–62.
  11. Elleithy, W. (2008). Analysis of problems in elasto-plasticity via an adaptive FEM–BEM coupling method. Computer Methods in Applied Mechanics and Engineering, 197 (45-48), 3687–3701. doi:10.1016/j.cma.2008.02.018
  12. Haidaichuk, V. V., Kotenko, K. E., Tkachenko, I. A. (2016). Dynamichnyi monitorynh budivelnoi sporudy Mizhnarodnoho vystavkovoho tsentru. Nauka ta Budivnytstvo, 9 (3), 20–25.
  13. Sizov, A. M. (1972). Otsenka dopustimogo urovnya kolebaniy stroitel'nykh konstruktsiy. Spravochnik po dinamike sooruzheniy. Moscow: Stroyizdat, 511.
  14. Vashchilina, O. V., Borshch, O. V., Kotenko, K. E., Tkachenko, I. A. (2015). Skinchenno-elementnyi monitorynh konstruktsii Mizhnarodnoho vystavkovoho tsentru. Visnyk NTU, 31, 43–49.
  15. Belostotsky, A. M., Kalychava, D. K. (2012). Adaptive finite element models as the base of dynamic monitoring of tall buildings. Part 1: Theoretical basis of the developen technique: The basis of the developed computational and experimental methods. International Journal for Computation Civil and Structural Engineering, 8, 19–27.
  16. Larocca, A. P. C., Trabanco, J. A., De Araujo Neto, J. O., Cunha, A. L. (2014). Dynamic Monitoring vertical Deflection of Small Concrete Bridge Using Conventional Sensors And 100 Hz GPS Receivers – Preliminary Results. IOSR Jornal of Engineering, 4 (9), 9–20. doi:10.9790/3021-04920920

Published

2018-12-28

How to Cite

Gaidaichuk, V., Kotenko, K., & Kedyk, I. (2018). Development of theoretical and experimental dynamic monitoring of large-scale building structure. Technology Audit and Production Reserves, 1(2(39), 38–45. https://doi.org/10.15587/2312-8372.2018.123463

Issue

Section

Systems and Control Processes: Original Research