Use of high-performance plasticizers to provide design and operational requirements for the concrete composition for the construction of floating composite docks
DOI:
https://doi.org/10.15587/2312-8372.2018.124176Keywords:
floating composite dock, shipbuilding concrete, plasticizing additives, superplasticizers, strength of concreteAbstract
The object of research is plasticizers, which are the most popular additives for improving the quality properties of concrete, is used to build high-strength reinforced concrete products for hydrotechnical purposes. One of the most problematic places is the strength of concrete. This is due to extreme operating conditions and loads that survive the construction of the floating dock.
Methods of analysis and generalization of scientific literature on design and operational requirements for concrete of hydraulic structures were used during the research.
Data have been obtained that make it possible to compact the concrete mixture, reduce the consumption of cement, increase the frost resistance and waterproofness of concrete. This is due to the fact that the superplasticizers are introduced into the concrete mixture in an amount of 0.15...1.2 % of the cement mass, dilute the concrete mixture to a greater extent than conventional plasticizers. Superplasticizers have a number of features, in particular, the plasticizing effect persists for 1.0...1.5 hours after the addition, and after 2...3 hours it almost disappears.
Thanks to the use of plasticizers it is possible to increase the mobility of the concrete mix without reducing the strength of the concrete.
The combination of plasticizers with other types of additives (hardening accelerator, microsilica, air entraining admixtures) for concretes and mortars allows plants to produce high strength mixtures with unique properties.
References
- Rashkovskyi, O. S., Shchedrolosiev, O. V., Yermakov, D. V., Uzlov, O. M. (2015). Proektuvannia, tekhnolohiia i orhanizatsiia pobudovy kompozytnykh plavuchykh dokiv. Mykolaiv, 254.
- Drapalyuk, M. V. (2009). The technology of semi-dry concrete forming for elements of hydraulic structures. Science and transport progress. Bulletin of the Dnepropetrovsk National University of Railway Transport, 27, 178–180.
- Dvorkin, L. Y., Dvorkin, O. L. (2015). Proektuvannia skladiv betoniv. Rivne: NUVHP, 353.
- Pshinko, A. N. (2000). Podvodnoe betonirovanie i remont iskusstvennykh sooruzheniy. Dnipropetrovsk: Porogi, 412.
- Batrakov, V. G. (1998). Modifitsirovannye betony. Teoriya i praktika. Moscow: Stroyizdat, 768.
- Punahin, V. M., Pshinko, O. M., Rudenko, N. M. (1998). Pryznachennia skladiv hidrotekhnichnoho betonu. Dnipropetrovsk: Art-Pres, 213.
- Usov, B. A., Okolnikova, G. E. (2015). Chemical additives in prefabricated reinforced concrete technology. Ecology and construction, 4, 7–14.
- Saliya, M. G., Kostyuk, T. A., Spirin, Yu. A., Plugin, A. A. (2012). Physico-chemical studies of cement stone with chemical and mineral additives, increasing crack resistance and waterproofness. Collected scientific works of Ukrainian State University of Railway Transport, 130, 49–56.
- Nikiforova, N. A., Momot, V. O., Verhun, O. O. (2012). Vplyv kompleksnykh modyfikovanykh dobavok na morozostiikist vazhkykh betoniv. Zbirnyk naukovykh prats DNUZT, 2, 41–44.
- Kovalenko, V. V., Kovalenko, S. V., Vovk, A. I., Zayats, Yu. L. (2012). Issledovanie struktury i svoystv mineral'nykh dobavok dlya betonov i stroitel'nykh rastvorov. Zbirnyk naukovykh prats DNUZT, 1, 28–32.
- Chub, A. A. (2012). Issledovanie morozostoykosti, prochnostnykh i deformativnykh svoystv betona ot tekhnologicheskikh kharakteristik betonnykh smesey. Zbirnyk naukovykh prats DNUZT, 1, 120–125.
- Romanenko, O. V. (2012). Physico-chemical studies of cement stone with additives superplasticizer and hardening accelerator. Collected scientific works of Ukrainian State University of Railway Transport, 130, 40–49.
- Alexashin, S. V., Bulgakov, B. I., Popova, M. N. (2014). Fine concrete for hydraulic engineering modified by complex additive. Izvestiya SFedU. Engineering Sciences, 1 (150), 195–201.
- Ramachandran, V. S. (1988). Dobavki v beton. Moscow: Stroyizdat, 291.
- Perez Fernandez, R., Lamas Pardo, M. (2013). Offshore concrete structures. Ocean Engineering, 58, 304–316. doi:10.1016/j.oceaneng.2012.11.007
- Sousa Coutinho, J. (2003). The combined benefits of CPF and RHA in improving the durability of concrete structures. Cement and Concrete Composites, 25 (1), 51–59. doi:10.1016/s0958-9465(01)00055-5
- Bai, J., Sabir, B. B., Wild, S., Kinuthia, J. M. (2000). Strength development in concrete incorporating PFA and metakaolin. Magazine of Concrete Research, 52 (3), 153–162. doi:10.1680/macr.2000.52.3.153
- Bai, J., Wild, S., Sabir, B. B. (2003). Chloride ingress and strength loss in concrete with different PC–PFA–MK binder compositions exposed to synthetic seawater. Cement and Concrete Research, 33 (3), 353–362. doi:10.1016/s0008-8846(02)00961-4
- Bonavetti, V., Donza, H., Rahhal, V., Irassar, E. (2000). Influence of initial curing on the properties of concrete containing limestone blended cement. Cement and Concrete Research, 30 (5), 703–708. doi:10.1016/s0008-8846(00)00217-9
- Ghrici, M., Kenai, S., Said-Mansour, M. (2007). Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements. Cement and Concrete Composites, 29 (7), 542–549. doi:10.1016/j.cemconcomp.2007.04.009
- Gartner, E. (2004). Industrially interesting approaches to «low-CO2» cements. Cement and Concrete Research, 34 (9), 1489–1498. doi:10.1016/j.cemconres.2004.01.021
- Kaushik, S. K., Islam, S. (1995). Suitability of sea water for mixing structural concrete exposed to a marine environment. Cement and Concrete Composites, 17 (3), 177–185. doi:10.1016/0958-9465(95)00015-5
- Khan, M. I., Lynsdale, C. J. (2002). Strength, permeability, and carbonation of high-performance concrete. Cement and Concrete Research, 32 (1), 123–131. doi:10.1016/s0008-8846(01)00641-x
- Khatib, J. M., Hibbert, J. J. (2005). Selected engineering properties of concrete incorporating slag and metakaolin. Construction and Building Materials, 19 (6), 460–472. doi:10.1016/j.conbuildmat.2004.07.017
- Limeira, J., Etxeberria, M., Agullo, L., Molina, D. (2011). Mechanical and durability properties of concrete made with dredged marine sand. Construction and Building Materials, 25 (11), 4165–4174. doi:10.1016/j.conbuildmat.2011.04.053
- Dmitrenko, A. E., Khachaturyan, A. P., Makhinin, B. V. (2012). Otsenka effektivnosti organicheskikh i mineral'nykh dobavok v melkozernistom betone. Nauchno-tekhnicheskoe i ekonomicheskoe sotrudnichestvo stran ATR v XX veke, 1, 289–295.
- Shkorko, M. Yu., Zhurovich, E. A., Kozlova, K. S., Bessonova, Yu. V. (2017). Plasticizers in concrete. Innovative science, 4–3, 145–147.
- Zakharov, S. A. (2008). Optimizatsiya sostavov betonov vysokoeffektivnymi polikarboksilatnymi plastifіkatorami. Stroitel'nye materialy, 3, 42–43.
- Aminova, G. K., Maskova, A. R., Buylova, E. A., Gorelov, V. S., Mazitova, A. K. (2012). Plastifikatory dlya polivinilkhloridnykh kompozitsiy stroitel'nogo naznacheniya. Promyshlennoe proizvodstvo i ispol'zovanie elastomerov, 4, 29–32.
- Dudynov, S. V. (2003). Ekonomicheski bezvrednyy plastifikator stroitel'nogo naznacheniya. Vestnik mordovskogo universiteta, 1–2, 138–145.
- Topchiy, Yu. S., Khabirov, D. M. (2013). Modifitsirovannyy belkovyy plastifikator dlya tsementnykh sistem. Tekhnologii betonov, 11 (88), 46–47.
- Ruzhitskaya, A. V., Potapova, E. N. (2009). Vliyanie dobavok-plastifikatorov na svoystva belogo portlandtsementa. Innovatsionnaya nauka. Tekhnika i tekhnologiya silikatov, 16 (1), 14–23.
- Suraev, V. (2002). Gidrofobizatsiya. Teoriya i praktika. Tekhnologii stroitel'stva, 1, 120–121.
- Pashhenko, A. A. (1973). Gidrofobizatsiya. Kyiv: Naukova dumka, 174.
- Pashhenko, A. A. (1968). Kremniyorganicheskie gidrofobizatory v stroitel'stve. Alma-Ata: Kazakhstan, 78.
- Lukinskiy, O. A. (2008). Gidrofobizatsiya zdaniy. Zhilishhnoe stroitel'stvo, 11, 21–23.
- Orentlikher, L. P., Novikova, I. P., Lifanov, I. I., Yurchenko, E. N. (1991). Sposoby otsenki vliyaniya poverkhnostnoy gidrofobizatsii betona i modifitsiruyushhikh ego strukturu dobavok. Beton i zhelezobeton, 2 (431), 28–30.
- Gurinovich, L. S., Usov, B. A. (2015). The mechanochemical treatment of the building materials. Ecology and construction, 3, 22–25.
- Demyanova, V. S. (2000). Aktivnost' portlandtsementov v prisutstvii plastifikatora. Zhilishhnoe stroitel'stvo, 11, 30.
- Kamalova, Z. A., Rakhimov, R. Z., Ermilova, E. Yu., Stoyanov, O. V. (2013). Superplastifikatory v tekhnologii izgotovleniya kompozitsionnogo betona. Vestnik Kazanskogo tekhnologicheskogo universiteta, 8, 148–152.
- Kalashnikov, V. I. (2011). Terminologiya nauki o betonakh novogo pokoleniya. Stroitel'nye materialy, 3, 103–106.
- Bazhenov, Yu. M., Demyanova, V. S., Kalashnikov, V. I. (2006). Modifitsirovannye vysokoprochnye betony. Moscow: Assotsiatsiya stroitel'nykh vuzov, 368.
- Strokova, V. V., Molovieva, L. N. (2009). Otsenka vliyaniya kristallicheskikh zatravok na strukturoobrazovanie tsementnogo kamnya. Stroitel'nye materialy, 3, 97–98.
- Rashkovskiy, A. S., Slutskiy, N. G. (2008). Optimizatsiya sostava betona dlya pontonov kompozitnykh plavuchikh dokov. Zbіrnik naukovikh prats' NUK, 5 (422), 17–24.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Kostiantyn Kyrychenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.