Generalization of the aerodynamic characteristics of the cyclone and vortex chambers during their functioning

Authors

DOI:

https://doi.org/10.15587/2312-8372.2018.128043

Keywords:

aerodisperse flow, vortex chamber, cyclone apparatus, dust purification methods

Abstract

The object of research is cyclone and vortex chambers. Dust collectors in the form of cyclones and vortex chambers are promising for studying the process and improving their designs. One of the most problematic areas is the purification of aerodisperse systems, high hydraulic resistance, complex operation and installation, the need for powerful blowing devices.

The methods used to clean aerodisperse systems from dust, fog and harmful impurities, and the required purification efficiency are determined by sanitary and technological requirements. They also depend on the physicochemical properties of the impurities themselves, on the composition and activity of the reagents, and on the design of the devices used for purification. In connection with this, various technologies and methods of purification are used.

During the research:

−         analysis of the state of the theoretical description of the processes of «dry» purification of aerodisperse systems and known structures is performed;

−         analysis of methods for calculating the degree of gas purification from dust;

−         it is proved that modern methods of calculation don’t take into account some parameters, namely:

  • the characteristic structure of the swirling flow;
  • extinction of the swirling intensity as the flow is removed from the swirler;
  • changes in gas density in the radial direction under the action of centrifugal mass forces;
  • changes in the distribution of dispersed particles in size after passage of the air-dispersed system of swirlers;

−         it is suggested to consider in the calculations and studies the dust purification device as a complex;

−         it is proved that the proposed design most fully reflects the features of the process of «dry» purification of the dust and gas flow;

−         an equation is obtained which allows to estimate the tangential component of the rotation velocity of aerodisperse systems in a cyclone;

−         it is proved that the tangential component of the rotation velocity of the aerodisperse systems in the vortex apparatus varies depending on the intensity of the vortex and its attenuation.

Due to the study of flow dynamics, it is possible to increase the degree of flow purification, to improve the design of the dust purification equipment.

Author Biographies

Inna Pitak, National Technical University «Kharkiv Polytechnic Institute», 2, Kyrpychova str., Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Chemical Technique and Industrial Ecology

Valery Shaporev, National Technical University «Kharkiv Polytechnic Institute», 2, Kyrpychova str., Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of Chemical Technique and Industrial Ecology

Oleg Pitak, National Technical University «Kharkiv Polytechnic Institute», 2, Kyrpychova str., Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Labour Protection and Environmental

Serhii Briankin, National Technical University «Kharkiv Polytechnic Institute», 2, Kyrpychova str., Kharkiv, Ukraine, 61002

Head of Course of the Faculty of Military Training

Mykhailo Vasyliev, National Technical University «Kharkiv Polytechnic Institute», 2, Kyrpychova str., Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Chemical Technique and Industrial Ecology

References

  1. Natsionalna dopovid pro stan navkolyshnoho pryrodnoho seredovyshcha v Ukraini u 2014 rotsi. (2016). Kyiv: Ministry of Ecology and Natural Resources of Ukraine, FOP Hrin D. S., 350. Available at: https://menr.gov.ua/files/docs/%D0%A3%202014%20%D0%A0%D0%9E%D0%A6%D0%86.pdf. Last accessed: 20.03.2018.
  2. Shvidkiy, V. S., Ladigichev, M. G. (2002). Ochistka gazov. Moscow: Teploenergetik, 640.
  3. Vetoshin, A. G. (2005). Protsessy i apparaty pyleochistki. Penza: Penza State University, 210.
  4. Tkach, G. A., Shaporev, V. P., Titov, V. M. (1999). Proizvodstvo sody po malootkhodnoy tekhnologii. Kharkiv: KhGPU, 430.
  5. Shaporev, V. P., Pitak, I. V., Vasilyev, M. I. (2015). K voprosu o kharaktere svyazi vody v gidrokside kaltsiya. Vestnik NTU «KhPI». Khimiya, khimicheskaya tekhnologiya i ekologiya, 50 (1159), 121–127.
  6. Shaporev, V., Pitak, I., Pitak, O., Briankin, S. (2017). Study of functioning of a vortex tube with a two-phase flow. Eastern-European Journal of Enterprise Technologies, 4 (10 (88)), 51–60. doi:10.15587/1729-4061.2017.108424
  7. Briankin, S. S., Pitak, I. V., Shaporev, V. P. (2017). Tekhnika obespylivaniya na peredele obdzhiga karbonata kaltsiya. XI Mіzhnarodna naukovo-praktichna konferentsіya magіstrіv ta aspіrantіv. Kharkiv: NTU «KhPI», 11–12.
  8. Pitak, I. V. (2014). Study of experimental-industrial design of rotary vortex machine. Technology Audit and Production Reserves, 3 (2 (17)), 33–38. doi:10.15587/2312-8372.2014.26212
  9. Volkov, K. N., Deryugin, Yu. N., Emelianov, V. N., Karpenko, A. G., Kozelkov, A. S., Teterina, I. V. (2014). Metody uskoreniya gazodinamicheskikh raschetov na nestrukturirovannykh setkakh. Moscow: FIZMATLIT, 536.
  10. Girgidov, A. D. (2002). Mekhanika zhidkosti i gaza (gidravlika). Saint Petersburg: SPbGPU, 544.
  11. Dyachenko, N. N., Dyachenko, L. N. (2010). Matematicheskaya model' techeniya polidispersnogo ansamblya tverdykh chastits v uskoryayushhikhsya potokakh. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 3 (11), 95–99. Available at: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000461398
  12. Ivanov, A. P. (1997). Dinamika sistem s mekhanicheskimi soudareniyami. Moscow: Mezhdunarodnaya programma obrazovaniya, 336.
  13. Dinsmore, A. D., Crocker, J. C., Yodh, A. G. (1998). Self-assembly of colloidal crystals. Current Opinion in Colloid & Interface Science, 3 (1), 5–11. doi:10.1016/s1359-0294(98)80035-6
  14. Pitak, I., Briankin, S., Pitak, O., Shaporev, V. (2017). Analysis of the sanitary purification of gas emissions from dust in the lime manufacture. EUREKA: Physics and Engineering, 5, 65–72. doi:10.21303/2461-4262.2017.00435
  15. Shaporev, V., Pitak, I., Pitak, O., Briankin, S. (2017). Investigation of the functioning of a vortex tube in supply of disperse flow (gas – dust particles) to the tube. Technology Audit and Production Reserves, 4 (3 (36)), 14–21. doi:10.15587/2312-8372.2017.109172
  16. Strelets, K. I., Milyukova, A. A., Vatin, N. I. (2002). Ochistka promyshlennykh gazov. XXX Yubileynaya nedelya nauki SPbGTU. Part 1.Saint Petersburg: SPbGTU, 71–73.
  17. Protopopov, R. Ya., Filenko, O. N., Shaporev, V. P. (2012). About reactor modeling for organic impurities thermal neutralization. Eastern-European Journal of Enterprise Technologies, 2 (12 (56)), 22–27. Available at: http://journals.uran.ua/eejet/article/view/3925
  18. Tovazhnyanskiy, L. L., Pertsev, L. P., Shaporev, V. P., Danilov, Yu. B., Morozova, N. L., Lopukhina, O. A. (2004). Teploenergetika pogruzhnogo goreniya v reshenii problem teplosnabzheniya i ekologii Ukrainy. Integrirovannyye tekhnologii i energosberezheniye, 3, 3–12.
  19. Vatin, N. I., Strelets, K. I. (2003). Ochistka vozdukha pri pomoshhi apparatov tipa tsiklon. Moscow: Preprint, 213.
  20. Batluk, V. A., Proskurina, I. V., Liashenyk, A. V. (2010). Matematychna model protses ochyshchennia zapylenoho potoku u vidtsentrovo-inertsiinykh pylovlovliuvachakh. Promyslova hidravlika i pnevmatyka, 1 (27), 31–36.
  21. Khitrova, I. V., Novozhilova, T. B., Nechiporenko, D. I. (2016). Tekhnologiya obezvrezhivaniya i utilizatsii komponentov gazovykh vybrosov. Kharkiv: NTU «KHPI», 130.
  22. Frumin, V. M., Gut, V. M., Burin, V. L., Oleychenko, T. V., Rayda, M. R., Rezanov, A. A. (2016). Sposoby sukhoy ochistki gaza kal'tsinatsii ot sodovoy pyli. Khimiya i tekhnologiya proizvodstv osnovnoy khimicheskoy promyshlennosti, 78, 52–57.
  23. Thakare, H. R., Monde, A., Parekh, A. D. (2015). Experimental, computational and optimization studies of temperature separation and flow physics of vortex tube: A review. Renewable and Sustainable Energy Reviews, 52, 1043–1071. doi:10.1016/j.rser.2015.07.198
  24. Turubaev, R. R., Shvab, A. V. (2017). Numerical study of swirled flow aerodynamics in the vortex chamber of the combined pneumatic machine. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 47, 87–98. doi:10.17223/19988621/47/9
  25. Shvab, А. V., Popp, M. Yu. (2014). Modeling of the laminar swirling flow in a vortex chamber. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2 (28), 90–97.
  26. Tan, F., Karagoz, I., Avci, A. (2016). The Effects of Vortex Finder Dimensions on the Natural Vortex Length in a New Cyclone Separator. Chemical Engineering Communications, 203 (9), 1216–1221. doi:10.1080/00986445.2016.1160228
  27. Nezhad, H., Shamsoddini, R. (2009). Numerical three-dimensional analysis of the mechanism of flow and heat transfer in a vortex tube. Thermal Science, 13 (4), 183–196. doi:10.2298/tsci0904183n
  28. Deych, M. E., Filippov, G. A. (1968). Gazodinamika dvukhfaznykh sred. Moscow: Energiya, 423.
  29. Pitak, I., Shaporev, V., Briankin, S., Pitak, O. (2017). Justification of the calculation methods of the main parameters of vortex chambers. Technology Audit and Production Reserves, 5 (3 (37)), 9–13. doi:10.15587/2312-8372.2017.112782
  30. Galich, R. V., Yakuba, A. R., Sklabinskiy, V. I., Storozhenko, V. Ya. (2014). Development and introduction of vortex dust catchers with swirling counter-flows. Khimicheskoe i Neftegazovoe Mashinostroenie, 3, 12–15.

Published

2017-12-28

How to Cite

Pitak, I., Shaporev, V., Pitak, O., Briankin, S., & Vasyliev, M. (2017). Generalization of the aerodynamic characteristics of the cyclone and vortex chambers during their functioning. Technology Audit and Production Reserves, 2(3(40), 26–34. https://doi.org/10.15587/2312-8372.2018.128043

Issue

Section

Ecology and Environmental Technology: Original Research