Control of vortex structures of abnormally viscous fluids in the channels of the extrusion die

Authors

DOI:

https://doi.org/10.15587/2312-8372.2018.128478

Keywords:

sudden narrowing of the channel, vortex structures, flow supply in the radial direction

Abstract

The object of research is the vortex structures arising during the flow of anomalously viscous media in the channels of the forming equipment. One of the most problematic places is insufficient knowledge of the processes of origin and development of circulation flows. This is due to the fact that the hydrodynamic mechanisms of these processes are not completely understood. The reason for this is the lack of precise analytical solutions that allow describing the process model and choose the method of hydrodynamic control of vortex structures and on its basis to improve shaping equipment.

In the course of the research it is established that the most effective way to control the hydrodynamic flow characteristics in the region of the sharp narrowing of the channel is supplying additional fluid flow in the radial direction with respect to the main flow. The design of a extrusion die is developed, which allows to realize the mixing mode of components with improved technological and energy indicators. This is due to the fact that the proposed method for controlling vortex structures has a number of distinctive features, in particular, the extruded medium passes through the die channels in the form of a sudden constriction, and then along the course of the flow, cone expansion. The mixed technological component is fed radially into the region of the vortex structures with a reduced pressure zone. Due to this, it is possible to disrupt the vortex structures, turbulence of the flow and intensive mixing of the main and additional flows. In comparison with similar known equipment, the location of mixing devices and stationary turbulators is not provided in the die channels, which reduces the energy consumption for the extrusion process. In addition, it is possible to use a lower power pump to feed the process component to the base stream.

The developed device for the input of technological components into the extruded material is designed by the patent of Ukraine No. 201503942.

Author Biographies

Sergey Nosko, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Peremohy ave., Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of Fluid Mechanics and Mechatronics

Ihor Ahaiev, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Peremohy ave., Kyiv, Ukraine, 03056

Department of Fluid Mechanics and Mechatronics

References

  1. Torner, R. V. (1977). Teoreticheskie osnovy pererabotki polimerov. Moscow: Khimiya, 462.
  2. Kutuzov, A. G., Kutuzova, G. S., Kutuzova, M. A., Garifullin, F. A. (2012). Bezvikhrevoe techenie vyazkouprugoy zhidkosti vo vkhodnom kanale ekstruzionnoy golovki. Vestnik Kazanskogo tekhnologicheskogo universiteta, 15 (21), 137–139.
  3. Clemeur, N., Rutgers, R. P. G., Debbaut, B. (2004). Numerical simulation of abrupt contraction flows using the Double Convected Pom–Pom model. Journal of Non-Newtonian Fluid Mechanics, 117 (2–3), 193–209. doi:10.1016/j.jnnfm.2004.02.001
  4. Boger, D. V., Hur, D. U., Binnington, R. J. (1986). Further observations of elastic effects in tubular entry flows. Journal of Non-Newtonian Fluid Mechanics, 20, 31–49. doi:10.1016/0377-0257(86)80014-3
  5. Verbeeten, W. M. H., Peters, G. W. M., Baaijens, F. P. T. (2001). Differential constitutive equations for polymer melts: The extended Pom–Pom model. Journal of Rheology, 45 (4), 823–843. doi:10.1122/1.1380426
  6. Cherry, E. M., Padilla, A. M., Elkins, C. J., Eaton, J. K. (2010). Three-dimensional velocity measurements in annular diffuser segments including the effects of upstream strut wakes. International Journal of Heat and Fluid Flow, 31 (4), 569–575. doi:10.1016/j.ijheatfluidflow.2010.02.029
  7. Kutuzova, E. R., Tazyukov, F. Kh., Khalaf, Kh. A. (2014). Dinamika techeniya vyazkouprugoy zhidkosti cherez ploskoe 8:1 suzhenie. Vestnik Kazanskogo tekhnologicheskogo universiteta, 17 (16), 83–85.
  8. Mackley, M., Rutgers, R. P., Gilbert, D. (1998). Surface instabilities during the extrusion of linear low density polyethylene. Journal of Non-Newtonian Fluid Mechanics, 76 (1–3), 281–297. doi:10.1016/s0377-0257(97)00122-5
  9. Miller, E., Rothstein, J. P. (2004). Control of the sharkskin instability in the extrusion of polymer melts using induced temperature gradients. Rheologica Acta, 44 (2), 160–173. doi:10.1007/s00397-004-0393-4
  10. Tazyukov, F. Kh., Kutuzova, E. R., Snegirev, B. A. (2014). Potoki vyazkouprugikh zhidkostey modeley OLDROYD-B i FENE-P. Vestnik Kazanskogo tekhnologicheskogo universiteta, 17 (18), 120–122.
  11. Tazyukov, F. Kh., Khalaf, H. A. (2010). Numerical simulation of the laminar flow of non-Newtonian fluid through a disk-type prosthetic heart value. Diyala Journal of Engineering Sciences, 26–39.
  12. Tatamikov, A. A., Burtelov, L. V. (2004). Generalies mathematical model of the throughput of the pressuie zone of an extruder. International Polymer Science and Technology, 31 (12), 72–75.
  13. Arda, D. R., Mackley, M. R. (2005). The effect of die exit curvature, die surface roughness and a fluoropolymer additive on sharkskin extrusion instabilities in polyethylene processing. Journal of Non-Newtonian Fluid Mechanics, 126 (1), 47–61. doi:10.1016/j.jnnfm.2004.12.005
  14. Nosko, S. V., Shevchuk, A. A. (2013). The structure of flow in the complex duct in a radial admission of escapages. Eastern-European Journal of Enterprise Technologies, 2 (7 (62)), 57–60. Available at: http://journals.uran.ua/eejet/article/view/12390
  15. Nosko, S. V., Mossiychuk, V. A. (2011). Issledovanie kinematicheskikh kharakteristik potoka v kanalakh litnikovoy sistemy metodami vizualizatsii. Vestnik NTUU «KPI». Mashinostroenie, 62, 79–82.
  16. Tager, A. A., Botvinnik, G. O., Dreval, V. E. (1970). Energiya i entropiya aktivatsii vyazkogo techeniya kontsentrirovannykh rastvorov polimerov. Moscow: Khimiya, 296.
  17. Mikaeli, V. (2007). Ekstruzionnye golovki dlya plastmass i reziny. Konstruktsii i tekhnicheskie raschety. Saint Petersburg: Profesiya, 472.
  18. Nosko, S. V., Shevchuk, A. A. (10.11.2015). Formuiuchyi prystrii dlia vvodu tekhnolohichnykh komponentiv v yekstrudovanyi material. Patent No. 102591 UA, MPK V29S47. Appl. No. 201503942. Filed: 24.04.2015. Bull. No. 21, 3.

Published

2017-12-28

How to Cite

Nosko, S., & Ahaiev, I. (2017). Control of vortex structures of abnormally viscous fluids in the channels of the extrusion die. Technology Audit and Production Reserves, 2(1(40), 18–24. https://doi.org/10.15587/2312-8372.2018.128478

Issue

Section

Mechanics: Original Research