Development of directed regulation of rheological properties of fire retardant composite materials of ethylene vinyl acetate copolymer

Authors

DOI:

https://doi.org/10.15587/2312-8372.2018.129699

Keywords:

composite materials, ethylene-vinyl acetate copolymer, fire retardant fillers, rheological properties

Abstract

The object of research is rheological processes of viscous flow of non-combustible polymeric composite materials. One of the most problematic issues arising in the processing of polymer composite materials is an increased viscosity, which requires an increase in shear stresses to achieve a given speed.

In order to solve this problem, a method has been developed for the directed regulation of the rheological characteristics of polymer compositions by injecting a modifier into their composition. The influence of the modifier on the viscous flow processes of fire retardant materials of an ethylene with vinyl acetate copolymer and fire retardant fillers, has been studied. In the studies, an ethylene vinyl acetate copolymer is used. The content of vinyl acetate is 18 % and 28 %; MFI 2.5 g/10 min and MFI 5 g/10 min. Modifier is aminosilane. Fillers are fire retardants:

  • aluminum trihydroxide with an average particle diameter of 1.5 μm and 3.0 μm;
  • magnesium hydroxide with an average particle diameter of 3.0 μm and 3.7 μm;
  • hydromagnesite with an average particle diameter of 1.4 μm.

Using the method of capillary viscometry, the following characteristics are determined: melt flow index, shear stress, shear rate, effective viscosity and viscous flow activation energy. The melt flow index decreases with the use fire retardant fillers with a smaller average particle diameter. The melt flow rate of the polymer composition using fire retardant filler- of different chemical nature and dispersity increases with the modifier injection. For aluminum trihydroxide 2–8 times, for magnesium hydroxide 2.2–3 times, for hydromagnesite 2.0–2.2 times. The shear stress and the effective viscosity, on the contrary, decrease when the modifier is injected into the polymer composition.

The obtained results allow to increase the productivity during processing of the developed materials due to the decrease of such parameters as viscosity, shear stress, increase in the melt flow parameters and shear rate. This, in turn, will positively affect the reduction of energy costs and the production time of cable products.

The results will be useful in the development of formulations of polymer compositions for cable products and the directed regulation of technological parameters during their processing.

Author Biography

Olena Chulieieva, PJSC «YUZHCABLE WORKS», 7, Avtohenna str., Kharkiv, Ukraine, 61099

PhD, Director of the Science and Technology Center

References

  1. Peshkov, I. B. (2013). Materialy kabel'nogo proizvodstva. Moscow: Mashinostroenie, 456.
  2. Chang, D. Kh.; Vinogradov, G. V., Fridman, M. L. (Eds.). (1979). Reologiya v protsessakh pererabotki polimerov. Moscow: Khimiya, 368.
  3. Tirelli, D. (2013). Antipireny dlya kompozitov. The Chemical Journal, 1–2, 42–45.
  4. Obzor mineral'nykh antipirenov-gidroksidov dlya bezgalogennykh kabel'nykh kompozitsiy. (2009). Kabel'-news, 8, 41–43.
  5. Cardenas, M. A., Garcia-Lopez, D., Gobernado-Mitre, I., Merino, J. C., Pastor, J. M., Martinez, J. de D. et al. (2008). Mechanical and fire retardant properties of EVA/clay/ATH nanocomposites – Effect of particle size and surface treatment of ATH filler. Polymer Degradation and Stability, 93 (11), 2032–2037. doi:10.1016/j.polymdegradstab.2008.02.015
  6. Laoutid, F., Lorgouilloux, M., Lesueur, D., Bonnaud, L., Dubois, P. (2013). Calcium-based hydrated minerals: Promising halogen-free flame retardant and fire resistant additives for polyethylene and ethylene vinyl acetate copolymers. Polymer Degradation and Stability, 98 (9), 1617–1625. doi:10.1016/j.polymdegradstab.2013.06.020
  7. Formosa, J., Chimenos, J. M., Lacasta, A. M., Haurie, L. (2011). Thermal study of low-grade magnesium hydroxide used as fire retardant and in passive fire protection. Thermochimica Acta, 515 (1–2), 43–50. doi:10.1016/j.tca.2010.12.018
  8. Lujan-Acosta, R., Sanchez-Valdes, S., Ramirez-Vargas, E., Ramos-DeValle, L. F., Espinoza-Martinez, A. B., Rodriguez-Fernandez, O. S. et al. (2014). Effect of Amino alcohol functionalized polyethylene as compatibilizer for LDPE/EVA/clay/flame-retardant nanocomposites. Materials Chemistry and Physics, 146 (3), 437–445. doi:10.1016/j.matchemphys.2014.03.050
  9. Hoffendahl, C., Fontaine, G., Duquesne, S., Taschner, F., Mezger, M., Bourbigot, S. (2015). The combination of aluminum trihydroxide (ATH) and melamine borate (MB) as fire retardant additives for elastomeric ethylene vinyl acetate (EVA). Polymer Degradation and Stability, 115, 77–88. doi:10.1016/j.polymdegradstab.2015.03.001
  10. Fernandez, A. I., Haurie, L., Formosa, J., Chimenos, J. M., Antunes, M., Velasco, J. I. (2009). Characterization of poly(ethylene-co-vinyl acetate) (EVA) filled with low grade magnesium hydroxide. Polymer Degradation and Stability, 94 (1), 57–60. doi:10.1016/j.polymdegradstab.2008.10.008
  11. Hoffendahl, C., Duquesne, S., Fontaine, G., Taschner, F., Mezger, M., Bourbigot, S. (2015). Decomposition mechanism of fire retarded ethylene vinyl acetate elastomer (EVA) containing aluminum trihydroxide and melamine. Polymer Degradation and Stability, 113, 168–179. doi:10.1016/j.polymdegradstab.2014.09.016
  12. Zhang, J., Hereid, J., Hagen, M., Bakirtzis, D., Delichatsios, M. A., Fina, A. et al. (2009). Effects of nanoclay and fire retardants on fire retardancy of a polymer blend of EVA and LDPE. Fire Safety Journal, 44 (4), 504–513. doi:10.1016/j.firesaf.2008.10.005
  13. Chang, M.-K., Hwang, S.-S., Liu, S.-P. (2014). Flame retardancy and thermal stability of ethylene-vinyl acetate copolymer nanocomposites with alumina trihydrate and montmorillonite. Journal of Industrial and Engineering Chemistry, 20 (4), 1596–1601. doi:10.1016/j.jiec.2013.08.004
  14. Makarova, N. V. (2002). Statistika v Excel. Moscow: Finansy i statistika, 368.
  15. Malkin, A. Ya., Isaev, A. I. (2007). Reologiya. Kontseptsii, metody, prilozheniya. Moscow: Professiya, 560.
  16. Shakh, V.; Malkin, A. Ya. (Ed.). (2009). Spravochnoe rukovodstvo po ispytaniyam plastmass i analizu prichin ikh razrusheniya. Saint Petersburg: Nauchnye osnovy i tekhnologii, 732.
  17. Lipatov, Yu. S. (Ed.). (1977). Teplofizicheskie i reologicheskie kharakteristiki polimerov. Kyiv: Naukova dumka, 244.
  18. Mukhin, N. M. (2011). Opredelenie reologicheskikh i fiziko-mekhanicheskikh svoystv polimernykh materialov. Ekaterinburg: UGLTU, 33.

Published

2017-12-28

How to Cite

Chulieieva, O. (2017). Development of directed regulation of rheological properties of fire retardant composite materials of ethylene vinyl acetate copolymer. Technology Audit and Production Reserves, 2(1(40), 25–31. https://doi.org/10.15587/2312-8372.2018.129699

Issue

Section

Materials Science: Original Research