The emergency simulation with the help of four-layer hidden Markov model

Authors

DOI:

https://doi.org/10.15587/2312-8372.2018.135831

Keywords:

synergetic effect, accounting for emergence, hidden Markov model, hidden layer, adequacy of the model

Abstract

The object of research is the process of selecting a synergistically determined pair for the elements of complex systems in the design, manufacture or repair. One of the most problematic places in the selection is the need to numerically evaluate the result of combining the elements, taking into account the explicit, additive properties of elements and hidden manifestations of the pair that are unusual for the elements alone (emergence). Lack of accounting for emergence can significantly distort the apparent picture of the processes taking place in systems, which makes many existing models of such processes inadequate.

During the research, methods of extracting information from arrays known, hidden for direct observation were used. In particular, four-layer hidden Markov models with an additional hidden layer were used. The models were trained by the Baum-Welch method, adapted to work with an additional layer. As training samples used data obtained as a result of statistical processing of information available for object monitoring, expert assessments, as well as data obtained in the world's computer networks.

The test of the method and model on real medical and technical objects confirms their clinical and technical effectiveness. In particular, thanks to this in the medical industry:

  • in the medical industry, the incidence of thromboembolism of the branches of the pulmonary artery and deep veins of the thigh and lower leg are decreased by 65 %;
  • frequency of postoperative bleeding is decreased by 43 %;
  • by 36 % the total number of drug-related medicines aimed at correcting the blood coagulation system is decreased.

In the technical field, the test results confirm the increase in the service life of rubber-metal shock absorbers by 14.5 %.

This is due to the fact that the proposed method has a number of features, in particular, for the first time in its evaluation of emergence a four-layer hidden Markov model is used.

The results obtained in the work make it possible to propose a general scheme of an intellectual decision support system in the selection of a synergistically determined pair of elements for complex systems of various purposes.

Author Biographies

Sergiy Nesterenko, Odessa National Polytechnic University, 1, Shevchenko ave., Odessa, Ukraine, 65044

Doctor of Technical Sciences, Professor

Department of Computer Intellectual Systems and Networks

Olesya Daderko, Odessa National Polytechnic University, 1, Shevchenko ave., Odessa, Ukraine, 65044

Department of Oilgas and Chemical Mechanical Engineering

Igor Saukh, Odessa National Polytechnic University, 1, Shevchenko ave., Odessa, Ukraine, 65044

Department of Oilgas and Chemical Mechanical Engineering

References

  1. Skott, M. (2007). Operativnaya pamyat'. Modernizaciya i remont PK. Moscow: Vil'yams, 499–572.
  2. Podbor dinamikov. Audiomania. Available at: https://www.audiomania.ru/content/art-1740.html
  3. Stanovskyi, O., Toropenko, A., Lebedeva, E., Dobrovolska, V., Daderko, O. (2017). Compensation of the spatial deviations of measuring elements in CAD. Technology Audit and Production Reserves, 1 (2 (39)), 52–60. doi: http://doi.org/10.15587/2312-8372.2018.123502
  4. Stanovskiy, A. L., Pozdnyakov, V. Yu. (2007). Koncepcii sistemy podderzhki avtomatizirovannogo perevoda stihotvornogo teksta. Trudy Odesskogo politekhnicheskogo universiteta, 2 (28), 162–165.
  5. Afanas'ev, I. B., Baturin, Yu. M., Belozerskiy, A. G. (2005). Mirovaya pilotiruemaya kosmonavtika. Istoriya. Tekhnika. Lyudi. Moscow: RTSoft, 752.
  6. Glushan', V. M., Karelin, V. P., Kuz'menko, O. L. (2009). Nechetkie modeli i metody mnogokriterial'nogo vybora v intellektual'nyh sistemah podderzhki prinyatiya resheniy. Izvestiya Yuzhnogo federal'nogo universiteta. Tekhnicheskie nauki, 106–113.
  7. Poisk pary chisel optimal'no blizkih k zadannomu konstantnomu chislu. MQL5. Available at: https://www.mql5.com/ru/forum/216667
  8. Luciv, D. V., Koznov, D. V., Basit, H. A., Terekhov, A. N. (2016). Zadacha poiska nechetkih povtorov pri organizacii povtornogo ispol'zovaniya dokumentacii. Programmirovanie, 4, 39–49.
  9. Pimenov, V. Yu. (2009). Vychislitel'no-effektivniy metod poiska nechetkih dublikatov v kollekcii izobrazheni. Rossiyskiy seminar po Ocenke Metodov Informacionnogo Poiska. Trudy ROMIP 2009. Sankt-Peterburg: NU CSI, 89–107. Available at: http://romip.ru/romip2009/09_ifm.pdf
  10. Nesterenko, S. A., Stanovskyi, A. O., Toropenko, A. V. (2013). Metod diahnostyky stanu struktury skladnoho obiekta mashynobuduvannia. Suchasni tekhnolohiyi v mashynobuduvanni, 8, 116–123.
  11. Nesterenko, S. A., Stanovskyi, A. O., Toropenko, A. V., Shvets, P. S. (2015). Transformation of the structure of complex technical systems with partially unusable elements to the visual image. Eastern-European Journal of Enterprise Technologies, 5 (3 (77)), 30–35. doi: http://doi.org/10.15587/1729-4061.2015.51186
  12. Nesterenko, S. A., Stanovskyi, A. O., Oborotova, O. O. (2015). The wireless computer networks state recognition over the three-dimensional field of directions. Technology audit and production reserves, 6 (2 (26)), 28–35. doi: http://doi.org/10.15587/2312-8372.2015.56825
  13. Chatzis, S. P., Kosmopoulos, D. (2012). Visual Workflow Recognition Using a Variational Bayesian Treatment of Multistream Fused Hidden Markov Models. IEEE Transactions on Circuits and Systems for Video Technology, 22 (7), 1076–1086. doi: http://doi.org/10.1109/tcsvt.2012.2189795
  14. Starner, T., Pentland, A. (1995). Real-Time American Sign Language Visual Recognition From Video Using Hidden Markov Models. MIT.
  15. Blasiak, S., Rangwala, H. (2011). A Hidden Markov Model Variant for Sequence Classification. IJCAI Proceedings-International Joint Conference on Artificial Intelligence, 1192–1197.
  16. Chatzis, S. P. (2010). Hidden Markov Models with Nonelliptically Contoured State Densities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32 (12), 2297–2304. doi: http://doi.org/10.1109/tpami.2010.153
  17. Petropoulos, A., Chatzis, S. P., Xanthopoulos, S. (2016). A novel corporate credit rating system based on Student’s-t hidden Markov models. Expert Systems with Applications, 53, 87–105. doi: http://doi.org/10.1016/j.eswa.2016.01.015
  18. Domingos, P. (2015). The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World. Basic Books, 352.
  19. Boudaren, M. E. Y., Monfrini, E., Pieczynski, W., Aïssani, A. (2012). Dempster-Shafer fusion of multisensor signals in nonstationary Markovian context. EURASIP Journal on Advances in Signal Processing, 2012 (1). doi: http://doi.org/10.1186/1687-6180-2012-134
  20. Chto takoe sinergiya? KlubOK.net. Available at: http://www.klubok.net/article2005.html
  21. Stanovska, I., Koshulyan, S., Toropenko, O., Daderko, O. (2018). Intellectual risk management in projects of transportation of large vehicles by the game theory. Bulletin of the National Technical University «KhPI». Ser.: New solutions in modern technologies, 9 (1285), 147–152. doi: http://doi.org/10.20998/2413-4295.2018.09.21

Published

2018-01-23

How to Cite

Nesterenko, S., Daderko, O., & Saukh, I. (2018). The emergency simulation with the help of four-layer hidden Markov model. Technology Audit and Production Reserves, 3(2(41), 11–17. https://doi.org/10.15587/2312-8372.2018.135831

Issue

Section

Information Technologies: Original Research