Regulation of rheological and mechanical properties of polypropylene compositions for automotive parts
DOI:
https://doi.org/10.15587/2312-8372.2018.152056Keywords:
polypropylene, calcite concentrate, propylene-octenoic block copolymers, rheological properties, mechanical properties, impact strength, autimotive partsAbstract
The object of research is the technology of producing filled impact-resistant compositions based on polypropylene for the manufacture of automotive parts. The main problem is the reduction of strength and technical characteristics with an increase in the amount of filler in the compositions. To solve this problem, the injection of a modifier in an amount of 5 mass % is proposed in filled polypropylene compositions.
The effect of the filler and modifier on the rheological and mechanical properties of polypropylene-based compositions has been studied. It has been established that the presence of calcite concentrate as a filler and propylene-octenoic block copolymers as a modifier in the composition helps to reduce its viscosity, which is due to the predominant effect of the emulsifying action of calcium stearate over the thickening effect of the mineral filler. An increase in the melt flow index in compositions with 5 % propylene-octenoic block polymer is shown, which is explained by its plasticizing effect and good combination with polypropylene. It is shown that the injection of the filler to 10 mass % increases the impact strength compared to the original polypropylene. A further increase in the filler content to 20 % in the compositions reduces the impact strength to almost the value for the output polypropylene with an uncritical decrease in tensile strength. It is shown that the presence of 5 mass % of the modifier in the compositions increases the value of the relative elongation.
It is determined that the developed composition with 5 mass % of the modifier and with varying the amount of filler can be used for the production of parts for cars for various purposes without significant changes in the technological cycle. The advantage of the investigated compositions is the reduction of energy consumption for the processing of highly filled compositions. The implementation of the developed technologies does not require additional capital investments for the re-equipment of the enterprise, since the developed compositions can be processed using conventional extrusion equipment.
References
- Lunin, A. S., Yakhnenko, V. A., Gerasimova, N. V. (2002). Perspektivy primeneniya plastmass v kryliakh avtomobiley. Polimernyye materialy: izdeliya, oborudovaniye, tekhnologii, 11 (42), 1–5.
- Codolinia, A., Lia, Q. M., Wilkinson, A. (2017). Influence of machining process on the mechanical behaviour of injection-moulded specimens of talc-filled polypropylene. Polymer Testing, 62, 342–347. doi: http://doi.org/10.1016/j.polymertesting.2017.07.018
- Nomura, M., Shanmuga Ramanan, S. M., Arun, S. (2018). Automobile Bumpers. Comprehensive Composite Materials II, 3, 460–468. doi: http://doi.org/10.1016/b978-0-12-803581-8.03962-x
- Xanthos, M. (2010). Functional Fillers for Plastics. Weinheim: Wiley-VCH, 507. doi: https://doi.org/10.1002/9783527629848
- Mikhaylin, Yu. A. (2000). Primeneniyepolimernykhmaterialov v amtomobilestroyenii. Polimernyyematerialy: izdeliya, oborudovaniye, tekhnologii, 4 (11), 1–7.
- Mann, D., Van den Bos, J. C., Way, A. (1999). Plastics and Reinforcements used in Automobile Construction. Automotive Plastics and Composites, 27–28. doi: http://doi.org/10.1016/b978-185617349-0/50005-2
- Gahleitner, M., Paulik, C. (2017). Polypropylene and Other Polyolefins. Brydson’s Plastics Materials, 279–309. doi: http://doi.org/10.1016/b978-0-323-35824-8.00011-6
- Srivabut, C., Ratanawilai, T., Hiziroglu, S. (2018). Effect of nanoclay, talcum, and calcium carbonate as filler on properties of composites manufactured from recycled polypropylene and rubberwood fiber. Construction and Building Materials, 162, 450–458. doi: http://doi.org/10.1016/j.conbuildmat.2017.12.048
- Drobny, J. G. (2014). Polyolefin-Based Thermoplastic Elastomers. Handbook of Thermoplastic Elastomers, 209–218. doi: http://doi.org/10.1016/b978-0-323-22136-8.00007-7
- Nguyen, M. T., Chalaya, N. M., Osipchik, V. S. (2017). Modifikatsiya polipropilena metallotsenovym etilenpropilenovym elastomerom. Uspekhi v khimii i khimicheskoy tekhnologii, 11, 79–81.
- Münstedt, H. (2016). Rheological Properties of Filled Thermoplastics with Respect to Applications. Rheological and Morphological Properties of Dispersed Polymeric Materials. Hanser, 173–201. doi: http://doi.org/10.3139/9781569906088.007
- Melnichenko, M. A., Yershova, O. V., Chuprova, L. V. (2015). Vliyanie sostava napolniteley na svoystva polimernykh kompozitsionnykh materialov. Molodoy ucheniy, 16, 199–202.
- Liang, J.-Z. (2017). Impact fracture toughness and flow properties of polypropylene composites. Polymer Testing, 60, 381–387. doi: http://doi.org/10.1016/j.polymertesting.2017.04.022
- Bauman, N. A., Volkov, A. M., Ryzhikova, I. G., Volokhova, N. G., Volfson, S. I. (2010). Issledovaniye vliyaniya razvetvlennosti etilenpropilenovogo kauchuka na udarnuyu vyazkost smesey polipropilena i SKEPT. Rezinovaya promyshlennost. Syrye, materialy, tekhnologii. Moscow, 32–33.
- Ruksakulpiwat, Y., Sridee, J., Suppakarn, N., Sutapun, W. (2009). Improvement of impact property of natural fiber–polypropylene composite by using natural rubber and EPDM rubber. Composites Part B: Engineering, 40 (7), 619–622. doi: http://doi.org/10.1016/j.compositesb.2009.04.006
- Mohamad, N., Zainol, N. S., Rahim, F. F., Maulod, H. E. A., Rahim, T. A., Shamsuri, S. R. et. al. (2013). Mechanical and Morphological Properties of Polypropylene/Epoxidized Natural Rubber Blends at Various Mixing Ratio. ProcediaEngineering, 68, 439–445. doi: http://doi.org/10.1016/j.proeng.2013.12.204
- Singh, U. P., Biswas, B. K., Ray, B. C. (2009). Evaluation of mechanical properties of polypropylene filled with wollastonite and silicon rubber. Materials Science and Engineering: A, 501 (1-2), 94–98. doi: http://doi.org/10.1016/j.msea.2008.09.063
- Sengers, W. G. F. (2005). Rheological properties of olefinic thermoplastic elastomer blends. Dutch Polymer Institute, 172.
- Yang, Y.-C., Jeong, S.-B., Yang, S.-Y., Chae, Y.-B., Kim, H.-S. (2009). The Changes in Surface Properties of the Calcite Powder with Stearic Acid Treatment. Materials Transactions, 50, 695–701. doi: http://doi.org/10.2320/matertrans.mer2008388
- Glikshtern, M. V. (2002). Modifikatsiya napolniteley dlya plastmass. Polimernyye materialy: izdeliya, oborudovaniye, tekhnologii, 8 (39), 10–12.
- Arshinnіkov, D. І., Svіderskiy, V. A., Nudchenko, L. A. (2016). Sklad, struktura і dispersnіst prirodnoi kreydi rodovishch Ukraini. Vіsnik Natsіonalnogo tekhnіchnogo unіversitetu Ukraini «Kiivskiy polіtekhnіchniy іnstitut», 1, 103–107.
- Cao, Z., Daly, M., Clémence, L., Geever, L. M., Major, I., Higginbotham, C. L. et. al. (2016). Chemical surface modification of calcium carbonate particles with stearic acid using different treating methods. Applied Surface Science, 378, 320–329. doi: http://doi.org/10.1016/j.apsusc.2016.03.205
- Deshmukh, G. S., Pathak, S. U., Peshwe, D. R., Ekhe, J. D. (2010). Effect of uncoated calcium carbonate and stearic acid coated calcium carbonate on mechanical, thermal and structural properties of poly(butylene terephthalate) (PBT)/calcium carbonate composites. Bulletin of Materials Science, 33 (3), 277–284. doi: http://doi.org/10.1007/s12034-010-0043-7
- Kovalenko, A. N., Gurova, A. V. (2015). Vsya pravda o melovykh dobavkakh. Polimernyye materialy: izdeliya, oborudovaniye, tekhnologii, 8, 6–12.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Svetlana Saitarly, Viktoriia Plavan, Nataliia Rezanova, Nadiya Sova
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.