Regulation of rheological and mechanical properties of polypropylene compositions for automotive parts

Authors

DOI:

https://doi.org/10.15587/2312-8372.2018.152056

Keywords:

polypropylene, calcite concentrate, propylene-octenoic block copolymers, rheological properties, mechanical properties, impact strength, autimotive parts

Abstract

The object of research is the technology of producing filled impact-resistant compositions based on polypropylene for the manufacture of automotive parts. The main problem is the reduction of strength and technical characteristics with an increase in the amount of filler in the compositions. To solve this problem, the injection of a modifier in an amount of 5 mass % is proposed in filled polypropylene compositions.

The effect of the filler and modifier on the rheological and mechanical properties of polypropylene-based compositions has been studied. It has been established that the presence of calcite concentrate as a filler and propylene-octenoic block copolymers as a modifier in the composition helps to reduce its viscosity, which is due to the predominant effect of the emulsifying action of calcium stearate over the thickening effect of the mineral filler. An increase in the melt flow index in compositions with 5 % propylene-octenoic block polymer is shown, which is explained by its plasticizing effect and good combination with polypropylene. It is shown that the injection of the filler to 10 mass % increases the impact strength compared to the original polypropylene. A further increase in the filler content to 20 % in the compositions reduces the impact strength to almost the value for the output polypropylene with an uncritical decrease in tensile strength. It is shown that the presence of 5 mass % of the modifier in the compositions increases the value of the relative elongation.

It is determined that the developed composition with 5 mass % of the modifier and with varying the amount of filler can be used for the production of parts for cars for various purposes without significant changes in the technological cycle. The advantage of the investigated compositions is the reduction of energy consumption for the processing of highly filled compositions. The implementation of the developed technologies does not require additional capital investments for the re-equipment of the enterprise, since the developed compositions can be processed using conventional extrusion equipment.

Author Biographies

Svetlana Saitarly, Kyiv National University of Technologies and Design, 2, Nemyrovycha-Danchenka str., Kyiv, Ukraine, 01011

Postgraduate Student

Department of Applied Ecology, Technology of Polymers and Chemical Fibers

Viktoriia Plavan, Kyiv National University of Technologies and Design, 2, Nemyrovycha-Danchenka str., Kyiv, Ukraine, 01011

Doctor of Technical Sciences, Professor, Head of Department

Department of Applied Ecology, Technology of Polymers and Chemical Fibers

Nataliia Rezanova, Kyiv National University of Technologies and Design, 2, Nemyrovycha-Danchenka str., Kyiv, Ukraine, 01011

PhD, Associate Professor

Department of Applied Ecology, Technology of Polymers and Chemical Fibers

Nadiya Sova, Kyiv National University of Technologies and Design, 2, Nemyrovycha-Danchenka str., Kyiv, Ukraine, 01011

PhD, Associate Professor

Department of Applied Ecology, Technology of Polymers and Chemical Fibers

References

  1. Lunin, A. S., Yakhnenko, V. A., Gerasimova, N. V. (2002). Perspektivy primeneniya plastmass v kryliakh avtomobiley. Polimernyye materialy: izdeliya, oborudovaniye, tekhnologii, 11 (42), 1–5.
  2. Codolinia, A., Lia, Q. M., Wilkinson, A. (2017). Influence of machining process on the mechanical behaviour of injection-moulded specimens of talc-filled polypropylene. Polymer Testing, 62, 342–347. doi: http://doi.org/10.1016/j.polymertesting.2017.07.018
  3. Nomura, M., Shanmuga Ramanan, S. M., Arun, S. (2018). Automobile Bumpers. Comprehensive Composite Materials II, 3, 460–468. doi: http://doi.org/10.1016/b978-0-12-803581-8.03962-x
  4. Xanthos, M. (2010). Functional Fillers for Plastics. Weinheim: Wiley-VCH, 507. doi: https://doi.org/10.1002/9783527629848
  5. Mikhaylin, Yu. A. (2000). Primeneniyepolimernykhmaterialov v amtomobilestroyenii. Polimernyyematerialy: izdeliya, oborudovaniye, tekhnologii, 4 (11), 1–7.
  6. Mann, D., Van den Bos, J. C., Way, A. (1999). Plastics and Reinforcements used in Automobile Construction. Automotive Plastics and Composites, 27–28. doi: http://doi.org/10.1016/b978-185617349-0/50005-2
  7. Gahleitner, M., Paulik, C. (2017). Polypropylene and Other Polyolefins. Brydson’s Plastics Materials, 279–309. doi: http://doi.org/10.1016/b978-0-323-35824-8.00011-6
  8. Srivabut, C., Ratanawilai, T., Hiziroglu, S. (2018). Effect of nanoclay, talcum, and calcium carbonate as filler on properties of composites manufactured from recycled polypropylene and rubberwood fiber. Construction and Building Materials, 162, 450–458. doi: http://doi.org/10.1016/j.conbuildmat.2017.12.048
  9. Drobny, J. G. (2014). Polyolefin-Based Thermoplastic Elastomers. Handbook of Thermoplastic Elastomers, 209–218. doi: http://doi.org/10.1016/b978-0-323-22136-8.00007-7
  10. Nguyen, M. T., Chalaya, N. M., Osipchik, V. S. (2017). Modifikatsiya polipropilena metallotsenovym etilenpropilenovym elastomerom. Uspekhi v khimii i khimicheskoy tekhnologii, 11, 79–81.
  11. Münstedt, H. (2016). Rheological Properties of Filled Thermoplastics with Respect to Applications. Rheological and Morphological Properties of Dispersed Polymeric Materials. Hanser, 173–201. doi: http://doi.org/10.3139/9781569906088.007
  12. Melnichenko, M. A., Yershova, O. V., Chuprova, L. V. (2015). Vliyanie sostava napolniteley na svoystva polimernykh kompozitsionnykh materialov. Molodoy ucheniy, 16, 199–202.
  13. Liang, J.-Z. (2017). Impact fracture toughness and flow properties of polypropylene composites. Polymer Testing, 60, 381–387. doi: http://doi.org/10.1016/j.polymertesting.2017.04.022
  14. Bauman, N. A., Volkov, A. M., Ryzhikova, I. G., Volokhova, N. G., Volfson, S. I. (2010). Issledovaniye vliyaniya razvetvlennosti etilenpropilenovogo kauchuka na udarnuyu vyazkost smesey polipropilena i SKEPT. Rezinovaya promyshlennost. Syrye, materialy, tekhnologii. Moscow, 32–33.
  15. Ruksakulpiwat, Y., Sridee, J., Suppakarn, N., Sutapun, W. (2009). Improvement of impact property of natural fiber–polypropylene composite by using natural rubber and EPDM rubber. Composites Part B: Engineering, 40 (7), 619–622. doi: http://doi.org/10.1016/j.compositesb.2009.04.006
  16. Mohamad, N., Zainol, N. S., Rahim, F. F., Maulod, H. E. A., Rahim, T. A., Shamsuri, S. R. et. al. (2013). Mechanical and Morphological Properties of Polypropylene/Epoxidized Natural Rubber Blends at Various Mixing Ratio. ProcediaEngineering, 68, 439–445. doi: http://doi.org/10.1016/j.proeng.2013.12.204
  17. Singh, U. P., Biswas, B. K., Ray, B. C. (2009). Evaluation of mechanical properties of polypropylene filled with wollastonite and silicon rubber. Materials Science and Engineering: A, 501 (1-2), 94–98. doi: http://doi.org/10.1016/j.msea.2008.09.063
  18. Sengers, W. G. F. (2005). Rheological properties of olefinic thermoplastic elastomer blends. Dutch Polymer Institute, 172.
  19. Yang, Y.-C., Jeong, S.-B., Yang, S.-Y., Chae, Y.-B., Kim, H.-S. (2009). The Changes in Surface Properties of the Calcite Powder with Stearic Acid Treatment. Materials Transactions, 50, 695–701. doi: http://doi.org/10.2320/matertrans.mer2008388
  20. Glikshtern, M. V. (2002). Modifikatsiya napolniteley dlya plastmass. Polimernyye materialy: izdeliya, oborudovaniye, tekhnologii, 8 (39), 10–12.
  21. Arshinnіkov, D. І., Svіderskiy, V. A., Nudchenko, L. A. (2016). Sklad, struktura і dispersnіst prirodnoi kreydi rodovishch Ukraini. Vіsnik Natsіonalnogo tekhnіchnogo unіversitetu Ukraini «Kiivskiy polіtekhnіchniy іnstitut», 1, 103–107.
  22. Cao, Z., Daly, M., Clémence, L., Geever, L. M., Major, I., Higginbotham, C. L. et. al. (2016). Chemical surface modification of calcium carbonate particles with stearic acid using different treating methods. Applied Surface Science, 378, 320–329. doi: http://doi.org/10.1016/j.apsusc.2016.03.205
  23. Deshmukh, G. S., Pathak, S. U., Peshwe, D. R., Ekhe, J. D. (2010). Effect of uncoated calcium carbonate and stearic acid coated calcium carbonate on mechanical, thermal and structural properties of poly(butylene terephthalate) (PBT)/calcium carbonate composites. Bulletin of Materials Science, 33 (3), 277–284. doi: http://doi.org/10.1007/s12034-010-0043-7
  24. Kovalenko, A. N., Gurova, A. V. (2015). Vsya pravda o melovykh dobavkakh. Polimernyye materialy: izdeliya, oborudovaniye, tekhnologii, 8, 6–12.

Published

2018-05-31

How to Cite

Saitarly, S., Plavan, V., Rezanova, N., & Sova, N. (2018). Regulation of rheological and mechanical properties of polypropylene compositions for automotive parts. Technology Audit and Production Reserves, 6(3(44), 9–13. https://doi.org/10.15587/2312-8372.2018.152056

Issue

Section

Chemical and Technological Systems: Original Research