Approval of optimal pipeline`s cleaning methods according to multiphase flow patterns

Authors

DOI:

https://doi.org/10.15587/2312-8372.2019.155847

Keywords:

gas-liquid flow, transmission gas line, flow pattern, pipeline cleaning

Abstract

The object of research is gathering and transmission system of gas and gas condensate fields.

One of the major problem areas is the lack of an integrated approach and justification for choosing the optimal for pipeline cleaning methods (removing deposit) from the inner cavity of pipelines that form these systems. This leads to inefficient use of pipeline pigging equipment and significant operating costs without visible economic benefits. Based on analysis of gas-condensate life cycles, it is established that different stages of the field development are characterized by a proper gas-liquid flows pattern.

During the research, the relief characteristics of the flow and trunk lines, which transmit the gas-liquid flow with different gas contents, are investigated. Based on the analysis of the criteria characterizing the flow pattern, mathematical models of overall pressure drop on the rising and declining sections are presented. The determined pressure differences are formed according to different structures of motion of gas-liquid flows under the influence of hydraulic resistance of each of the studied sections.

The estimation of the hydraulic state of the system transporting a multiphase flow, based on a comparison of the actual measured pressure drop and its calculated value, is presented. By experimental researches it is established that the most dangerous factor in the operation of such systems is the possibility of slug moving when changing the baric regime of operation.

In order to increase the reliability and efficiency of pipelines operation, an algorithm for determining the structural form of motion and actual hydraulic state of the gathering and transmission system of different types of field is proposed. And a sequence of choosing the optimal method for pipeline cleaning is developed.

The proposed algorithm for choosing the best ways to drain liquid from the pipeline cavity will provide an opportunity to discard deliberately inefficient methods, as a result will save time and money for the Company.

Author Biographies

Petro Gorin, Ivano-Frankivsk National Technical University of Oil and Gas, 15, Karpatska str., Ivano-Frankivsk, Ukraine, 76019

Postgraduate Student

Department of Construction of Oil and Gas Pipelines and Gas Storage Tanks

Dmytro Tymkiv, Ivano-Frankivsk National Technical University of Oil and Gas, 15, Karpatska str., Ivano-Frankivsk, Ukraine, 76019

Doctor of Technical Sciences, Professor, Head of Department

Department of Software

Mikhailo Bratakh, JSC UkrGasVydobuvannya, 26/28, Kudriavska str., Kyiv, Ukraine, 04053

PhD

Division for the Collection, Preparation and Transport of Hydrocarbons of the Department of Ground Infrastructure

Oleksandr Filipchuk, JSC UkrGasVydobuvannya, 26/28, Kudriavska str., Kyiv, Ukraine, 04053

Division for the Collection, Preparation and Transport of Hydrocarbons of the Department of Ground Infrastructure

References

  1. Bratakh, M. I., Ruzina, I. M., Sobolieva, A. V. (2009). Dynamika ridynnykh formuvan v porozhnyni mizhpromyslovoho hazoprovodu. Pytannia rozvytku hazovoi promyslovosti Ukrainy, 37, 287–293.
  2. Eaton, B. A., Knowles, C. R., Silberbrg, I. H. (1967). The Prediction of Flow Patterns, Liquid Holdup and Pressure Losses Occurring During Continuous Two-Phase Flow In Horizontal Pipelines. Journal of Petroleum Technology, 19 (6), 815–828. doi: http://doi.org/10.2118/1525-pa
  3. Wellflo™ Petroleum engineering software user guide Software version 4.0. Weatherford, 374.
  4. Beggs, H. D. (1991). Production optimization using Nodal TM Analysis. Tulsa: OGCI Publication, 197.
  5. OLGA dynamic multiphase flow simulator. Available at: https://www.software.slb.com/products/olga
  6. VSN 51-3-85. (1985). Proektirovanie promyslovykh stal'nykh truboprovodov. Moscow, 106.
  7. Diachuk, V. V., Kaptsov, I. I., Stetsiuk, S. M., Sushko, H. M., Svitlytskyi, S. M. (2008). Pat. No. 36414 UA. Sposib vyznachennia hidravlichnoho stanu hazoprovodiv, yaki transportuiut hazoridynni sumishi. MPK (2006) F17D. No. u200806396; declareted: 14.05.2008; published: 27.10.2008, Bul. No. 20.
  8. Charnyy, I. A. (1965). Vliyanie rel'efa mestnosti i nepodvizhnykh vklyucheniy zhidkosti ili gaza na propusknuyu sposobnost' truboprovodov. Neftyanoe khozyaystvo, 6, 51–55.
  9. Gallyamov, A. K. (1972). Vytesnenie vysokovyazkikh neftey i nefteproduktov v truboprovodakh. Gidrodinamika i fil'tratsiya odnofaznykh i mnogofaznykh potokov. Trudy MINKHiGP. «Nedra», 101, 102–106.
  10. Bratakh, M. I. (2007). Sposib vyznachennia ob‘yemu zabrudnen v porozhnyni hazoprovodiv, shcho transportuiut haz vlasnoho vydobutku. Zbirnyk naukovykh prats «DP Naukanaftohaz», 5, 628–634.
  11. SOU 09.1-30019775-246:2015. Metodyka vyznachennia hidravlichnoho stanu hazoprovodiv systemy zboru ta transportuvannia hazu z rodovyshch PAT «Ukrhazvydobuvannia» (2015). Nakaz PAT «Ukrhazvydobuvannia» No. 347. Kyiv, 39.
  12. Pal'chikov, V. P. (1989). Beskontaktnyy sposob indikatsii urovnya zhidkikh otlozheniy v gazoprovodnykh sistemakh. Peredovoy proizvodstvennyy i nauchno-tekhnicheskiy opyt, rekomenduemyy dlya vnedreniya v gazovoy promyshlennosti, 2, 48–52.
  13. Farag, A. M. (2004). Crude Oil Pipelines Inspection. Technology of Oil and Gas Forum and Exhibition.
  14. Horin, P. V., Tymkiv, D. F., Holubenko, V. P. (2017). Systematyzatsiia metodiv ochystky hazozbirnykh merezh dlia transportuvannia hazu zrilykh rodovyshch. Komunalne hospodarstvo mist. Seriia: Tekhnichni nauky ta arkhitektura, 134, 52–57.
  15. Farag, A. M. (2004). Heavy Hydrocarbon Testing Methodology. The Micro CAD International Scientific Conference Hungary. Miskolc.
  16. Farag, A. M. (2003). Influence of Paraffin Flocculation in Crude Oil Tran sported Pipelines with Economic View of Pigging Process. 1st International Conference and Exhibition in Oil Field Chemicals. Tripoli.
  17. Farag, A. M. (2004). Wax Precipitation in Crude Oil Tran sporting Pipelines. The Micro CAD International Scientific Conference Hungary. Miskolc.
  18. Al-Yaari, M. (2011). Paraffin Wax Deposition: Mitigation and Removal Techniques. SPE Saudi Arabia Section Young Professionals Technical Symposium. doi: http://doi.org/10.2118/155412-ms
  19. Gupta, A., Sircar, A. (2016). Introduction to Pigging & a Case Study on Pigging of an Onshore Crude Oil Trunkline. Available at: https://www.researchgate.net/publication/307583466_Introduction_to_Pigging_a_Case_Study_on_Pigging_of_an_Onshore_Crude_Oil_Trunkline Last accessed: 16.03.2018
  20. Skorobagach, M. A. (2011). Problemy ekspluatatsii sistemy sbora gaza na mestorozhdenii Medvezh'e. Tekhnologii nefti i gaza, 6, 42–47.
  21. Bratakh, M. I., Skrylnyk, K. Yu., Burova, M. Ya. (2013). Syntez zadachi transportuvannia bahatofazovykh seredovyshch truboprovidnoiu systemoiu. Intehrovani tekhnolohii promyslovosti. Intehrovani tekhnolohii ta enerhozberezhennia, 4, 38–45.
  22. Romanova, B. M. (2017). V. 2 – Phase and multiphase flows handling in gathering system. St. Andrews, 131–136.
  23. Lemmon, E. W., Huber, M. L., McLinden, M. O. (2013). NIST Standard Reference Database 23 Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1. Standard Reference Data Program. Gaithersburg. Available at: https://www.nist.gov/publications/nist-standard-reference-database-23-reference-fluid-thermodynamic-and-transport
  24. Hughmark, G. A. (1962). Holdup in Gas Liquid Flow. Chemical Engineering Progress, 58, 62–65.
  25. Panic, D. (2009).Challenging Conventional Erosional Velocity Limitations for High Rate Gas Wells. CEED Seminar Proceedings. Chevron Australia Pty Ltd.
  26. American Petroleum Institute. Recommended Practice for Design and Installation of Offshore Production Platform Piping Systems. API RP 14E, Washington DC.

Published

2018-12-20

How to Cite

Gorin, P., Tymkiv, D., Bratakh, M., & Filipchuk, O. (2018). Approval of optimal pipeline`s cleaning methods according to multiphase flow patterns. Technology Audit and Production Reserves, 1(2(45), 21–30. https://doi.org/10.15587/2312-8372.2019.155847

Issue

Section

Systems and Control Processes: Original Research