Cavitation resistance of vacuum-arc coverings deposited on substrate of different orientation

Authors

  • Владимир Григорьевич Маринин National Science Center "Kharkov Institute of Physics and Technology", 61108, Kharkov, ul. Academic, 1, Ukraine https://orcid.org/0000-0001-5417-7029
  • Владимир Иванович Коваленко National Science Center "Kharkov Institute of Physics and Technology", 61108, Kharkov, ul. Academic, 1, Ukraine

DOI:

https://doi.org/10.15587/2312-8372.2013.16243

Keywords:

vacuum-arc coverings, titan, zirconium, resistance, cavitation, abrasive wear

Abstract

Here we set forth the results of measuring the cavitation resistance of coverings, rigidly fixed abrasive particles of vacuum-arc coverings, obtained from the erosion plasma of titanic and zirconium cathodes on the substrates with different orientation of their surfaces relative to the surfaces of cathodes. The cavitation area was developed under the end surface of the radiator of the exponential profile, connected to the ultrasonic wave generator. The oscillation amplitude of the concentrator end surface makes up 30±2 micrometers, the oscillation frequency amounts to 20 kilohertz. The erosion of the samples was measured by means of the gravimetric method. The weight loss measurement accuracy is ± 0,015 mg. The experimental data was used to build kinetic curves of material destruction of the samples. The abrasive wear was measured in accordance with the plane–disc scheme. The coverings were tested by laying them on the plane surface, while the disc was made of materials with rigidly fixed abrasive particles. The rotation speed of the disc surface, contacting with a covering, is 4,38 m/s, and the sample load against the covering equates to 2,2 H. The mass losses of the covering within a certain interim were measured as well. The micro hardness of the samples was measured with the help of the Micro Hardness Tester - 3. The research results have shown, that the cavitation resistance, micro hardness, abrasive resistance of titanic, zirconium and Ti – Zr system coverings, depend nonlinearly on the value of the angle between the substrate and the cathode surface. The formation of the Ti – Zr system coverings ensures the expansion of the area with identical covering properties. The area gets smaller by augmenting the vacuum chamber pressure.

Author Biographies

Владимир Григорьевич Маринин, National Science Center "Kharkov Institute of Physics and Technology", 61108, Kharkov, ul. Academic, 1

Candidate of physico-mathematical sciences, senior researcher

Department of intense vacuum plasma technology

Institute of solid-state physics, materials science and technologies

Владимир Иванович Коваленко, National Science Center "Kharkov Institute of Physics and Technology", 61108, Kharkov, ul. Academic, 1

Junior Researcher

Department of intense vacuum plasma technology

Institute of solid-state physics, materials science and technologies

References

  1. Бараненко, В. И. Решение проблемы снижения эрозионно-коррозионного оборудования и трубопроводов на зарубежных и отечествен-ных АЭС [Текст] / В. И. Бараненко, Ю. А. Янченко // Теплоэнергетика. – 2007. – №5. – С.12-19.
  2. Борисенок, Г. В. Химико-термическая обработка металлов и сплавов [Текст]: справочник [Текст] / Г. В. Борисенок, Л. А. Васильев, А. Г. Ворошнин и др. – М.: Металлургия, 1981. – 424 с.
  3. Аксенов, И. И. Вакуумная дуга: источники плазмы, осаждение покры-тий, поверхностное модифицирование [Текст] / И. И. Аксенов, А. А. Андреев, В. А. Белоус, В. Е. Стрельницкий, В. М. Хороших. – К.: Наукова думка. – 2012. – 728 с.
  4. Маринин, В. Г. Ерозія вакуумно-дугових титанових покриттів при дії кавітації [Текст] / В. Г.Маринін, В. І. Коваленко, Л. І. Мартиненко, Ю. М. Соловіченко // Препринт ХФТІ 2008-2-Харків: ННЦ ХФТІ. – 2008. – 22 с.
  5. Cheng, Y. H. Mechanical and tribological properties of nanocomposite T: Sin coatings [Текст] / Y. H. Cheng , T. Browne, B. Hecкerman, E. I. Meletis // Surface and Coatings Technology. – 2010. – № 204. – pp. 2123-2129.
  6. Marinin, V. G. Cavitation, Erosion of Ti coating produced by the vacuum arc method [Текст] / V. G. Marinin , V. I. Кovalenкo, N. S. Lomino // XIX ISDEV 2000, Xi'an china. – v.1. – pp. 315-317.
  7. Коваленко, В. І. Обладнання для дослідження ерозії покриттів при мікроударному діянні [Текст] / В. І. Коваленко, В. Г. Маринін // Вопросы атомной науки и техники. сер. Физика радиационных повреждений и радиационное материаловедение. – 1998.– №5 (71) – С. 83-89.
  8. Коваленко, В. И. Прочность поверхностных слоев циркониевых сплавов и вакуумно-дуговых покрытий при микроударном воздействии [Текст] / В. И. Коваленко, В. Г. Маринин // Вопросы атомной науки и техники. сер. Вакуум, чистые материалы, сверхпроводники. – 2008.– №1. – С.77-80.
  9. Ажажа, В.М. Синтез, структура, субструкутра, остаточные напряжения и отдельные физические свойства Ti-Zr-Ni-квазикристаллов [Текст] / В.М. Ажажа, С.М. Дуб, А.Н. Гриб и др. // Вісник Харківського національного університету. Сер. Фізка. – 2006. – №9, №739. – С. 103-107.
  10. Аксенов И.И. Вакуумная дуга в эрозионных источниках плазмы. [Текст] / И.И. Аксенов. – Харьков: ННЦ ХФТИ. – 2005. – 212с.
  11. Baranenko, V. I., Yanchenko, Yu. A. (2007). Reshenie problemy snizheniya erozionno-korrozionnogo oborudovaniya i truboprovodov na zarubezhnyx i otechesvennyh AES. Teploenergetika, №5, 12-19.
  12. Borisenok, G. V., Vasilev, L. A., Voroshnin, A. G. and others. (1981). Himiko-termicheskaya obrabotka metallov i splavov. Spravochnik. M.: Metallurgiya, 424.
  13. Aksenov, I. I., Belous, V. A., Strelnickij, V. E., Horoshih, V. M. (2012). Vakuumnaya duga: istochniki plazmy, osazhdenie pokrytij, poverhnostnoe modificirovanie. К.: Naukova dumka, 728.
  14. Marinin, V. G., Kovalenko, V. І., Martinenko, L. І. , Solovіchenko, Yu. M. (2008). Erozіya vakuumno-dugovix titanovix pokrittіv pri dії kavіtacії. Preprint XFTІ 2008-2-Kharkіv: NNC XFTІ, 22.
  15. Cheng, Y. H., Browne, T., Heckerman, B., Meletis E. I. (2010). Mechanical and tribological properties of nanocomposite Tі: Sin coatings. Surface and Coatings Technology, 204, 2123-2129.
  16. Marinin, V. G., Kovalenko, V. I., Lomino, N. S. (2000). Cavitation, Erosion of Ti coating produced by the vacuum arc method. XIX ISDEV 2000, Xi'an china, 1, 315-317.
  17. Kovalenko, V. І. Marinіn, V. G. (1998). Obladnannya dlya doslіdzhennya erozіi pokrittіv pri mіkroudarnomu dіyannі. Voprosy atomnoj nauki i tehniki. Fizika radiacionnyh povrezhdenij i radiacionnoe materialovedenie, №5 (71), 83-89.
  18. Kovalenko, V. І. Marinіn, V. G. (2008). Prochnost’ poverhnostnyh sloev cirkonievyh splavov i vacuumno-dugovyh pokrytij pri mikroudarnom vozdejstvii. VANT, №1, 77-80.
  19. Azhazha, V.M., Dub, S.M., Grib, A.N., Merisov, B.A., Hadzhaj, G.Ja., Malyhin, S.V., Pugachev, A.T., Gladkih, L.I. (2006). Sintez, struktura, substruktura, ostatochnye naprjazhenija i otdel’nye phizicheskie svojstva Ti-Zr-Ni- kvazikristallov. Visnyk Harkivskogo nacional’nogo universitetu, №9, №739, 103-107.
  20. Aksenov, I.I. (2005). Vacuum arc in erosion plasma sources. Kharkov: NSC KIPT, 212.

Published

2013-07-24

How to Cite

Маринин, В. Г., & Коваленко, В. И. (2013). Cavitation resistance of vacuum-arc coverings deposited on substrate of different orientation. Technology Audit and Production Reserves, 4(2(12), 15–18. https://doi.org/10.15587/2312-8372.2013.16243