Mathematical foundations of navigation parameters of the air transport by magnetominal circulation by using the method of least squares

Authors

DOI:

https://doi.org/10.15587/2312-8372.2019.170080

Keywords:

air traffic control processes, aircraft avionics, navigation information, least squares method

Abstract

Modern processes of air traffic control are realized on a single information platform called globally-localized information clusters, which are united in a single information environment. The main information component for such a system is navigation information about the location of each aircraft, containing dynamically updated data on its current coordinates and motion parameters. Under such conditions, there is the task of integrating navigation information obtained from various information sources that make up the aircraft avionics. Traditional approaches do not provide joint smoothing of coordinate information invariant to synchronization of measurements; therefore, the statistical analysis of experimental samples of navigation parameters is determined by the object of research.

The paper deals with a mathematical apparatus for providing multidimensional smoothing of the navigation parameters of an aircraft using the least squares method. To implement the proposed approach, the method of affine mapping of the coordinate space is used. This provides independent functional dependencies of the coordinate field of the aircraft for their joint processing by the method of least squares.

The developed software for multidimensional smoothing of the navigation parameters of the aircraft can be used to study the processes of evolution and maintenance of the software of the on-board computer complex of the aircraft. A feature of the approach is the time coordination of the obtained measurements at the model level, reduces the requirements for synchronization of the primary navigation parameters and expands the possibilities in the list of parameters that are processed together. This provides an increase in the accuracy of determining the current position of the aircraft compared to traditional approaches by attracting additional data redundancy.

The proposed approach can be extended to a wide range of applied industries related to the measurement, evaluation and prediction of changes over time in interrelated processes.

Author Biographies

Oleksiy Pisarchyk, National Aviation University, 1, Komarova ave., Kyiv, Ukraine, 03058

Doctor of Technical Sciences, Professor, Head of Department

Department of Software Engineering

Olena Grinenko, National Aviation University, 1, Komarova ave., Kyiv, Ukraine, 03058

Senior Lecturer

Department of Software Engineering

Mariya Vasilieva, National Aviation University, 1, Komarova ave., Kyiv, Ukraine, 03058

Assistant

Department of Software Engineering

Kirill Lopatin, National Aviation University, 1, Komarova ave., Kyiv, Ukraine, 03058

Assistant

Department of Software Engineering

References

  1. Rohozhyn, V. O., Skrypets, A. V., Filiashkin, M. K., Mukhina, M. P. (2015). Avtonomni systemy navihatsii konkretnoho typu povitrianoho sudna ta yikh tekhnichne obsluhovuvannia. Kyiv: NAU, 308.
  2. Lavrishcheva, K. M. (2008). Prohramna inzheneriia. Kyiv, 319.
  3. Kuzmin, S. Z. (2000). Tsifrovaia radiolokatsiia. Vvedenie v teoriiu. Kyiv: Izd-vo «KVІTS», 428.
  4. Kovbasiuk, S. V., Pysarchuk, O. O., Rakushev, M. Yu. (2008). Metod naimenshykh kvadrativ ta yoho praktychne zastosuvannia. Zhytomyr: ZhVI NAU, 228.
  5. Neuimin, A. S., Zhuk, S. Ia. (2012). Ustranenie raskhodimosti rasshirennogo kalmanovskogo filtra dlia soprovozhdeniia tseli po dannym impulsno-doplerovskoi RLS. Vіsnik Natsіonalnogo tekhnіchnogo unіversitetu Ukraini «Kiivskii polіtekhnіchnii іnstitut». Serіia – Radіotekhnіka. Radіoaparatobuduvannia, 48, 66–74.
  6. Vasilev, K. K. (2011). Primenenie statisticheskikh metodov pri proektirovanii korabelnykh sistem sviazi i avtomaticheskogo upravleniia dvizheniem. Avtomatizatsiia protsessov upravleniia, 1 (23), 72–77.
  7. Moskalenko, V. V., Moskalenko, A. S., Korobov, A. H. (2018). Modeli i metody intelektualnoi informatsiinoi tekhnolohii avtonomnoi navihatsii dlia malohabarytnykh bezpilotnykh aparativ. Radioelektronika, informatyka, upravlinnia, 3, 68–77.
  8. Guo, P., Ivashkin, V. V. (2018). Accuracy estimation for determining the motion parameters of a nonlinear dynamical system by the measurement result in the presence of interfering parameters. Keldysh Institute Preprints, 213, 1–36. doi: http://doi.org/10.20948/prepr-2018-213
  9. Kastella, K., Biscuso, M. (1995). Tracking Algorithms for Air Traffic Control Applications. Air Traffic Control Quarterly, 3 (1), 19–43. doi: http://doi.org/10.2514/atcq.3.1.19
  10. Benson, K. C., Pritchett, A. R., Goldsman, D. (2011). Embedded Statistical Analysis and Selection Procedures in Air Traffic Simulations. Air Traffic Control Quarterly, 19 (4), 269–297. doi: http://doi.org/10.2514/atcq.19.4.269
  11. Kukush, A., Markovsky, I., Van Huffel, S. (2007). Estimation in a linear multivariate measurement error model with a change point in the data. Computational Statistics & Data Analysis, 52 (2), 1167–1182. doi: http://doi.org/10.1016/j.csda.2007.06.010
  12. Mustafina, D. A., Burakova, A. E., Mustafin, A. I., Aleksandrova, A. S. (2018). Obobschennaia mnogomernaia interpoliatsiia metodom naimenshikh kvadra. Vestnik PNIPU. Elektrotekhnika, informatsionnye tekhnologii, sistemy upravleniia, 27, 30–48.
  13. Tiurin, Iu. N. (2010). Mnogomernii statisticheskii analiz: geometricheskaia teoriia. Teoriia veroiatnosti i ee primenenie, 55 (1), 36–58.
  14. Zhdaniuk, V. F. (1978). Osnovy statisticheskoi obrabotki traektornykh izmerenii. Moscow: Sovetskoe radio, 384.
  15. Korn, G., Korn, T. (1977). Spravochnik po matematike (dlia nauchnykh rabotnikov i inzhenerov). Moscow: Nauka, 831.
  16. Anuchin, O. N., Komarova, I. E., Porfirev, L. F. (2004). Bortovye sistemy navigatsii i orientatsii iskusstvennykh sputnikov Zemli. Saint Petersburg: GNTS RF TSNII «Elektropribor», 326.
  17. Semeniaka, E. N., Sukharevskii, I. V. (1990). Metod naimenshikh kvadratov s kratnymi uzlami. Kharkiv: VIRTA, 24.
  18. Pukhov, G. E. (1990). Differentsialnye spektry i modeli. Kyiv: Naukova dumka, 184.

Published

2018-12-31

How to Cite

Pisarchyk, O., Grinenko, O., Vasilieva, M., & Lopatin, K. (2018). Mathematical foundations of navigation parameters of the air transport by magnetominal circulation by using the method of least squares. Technology Audit and Production Reserves, 2(2(46), 37–42. https://doi.org/10.15587/2312-8372.2019.170080

Issue

Section

Systems and Control Processes: Original Research