Research of gas content and interfacial area in the downflow pipes of a circulation apparatus with jet injection gas filling
DOI:
https://doi.org/10.15587/2312-8372.2019.180770Keywords:
jet injection apparatus, downflow, circulation circuit, gas content, phase contact surfaceAbstract
The object of research is an apparatus with jet injection gas filling. The studies are conducted on an experimental installation of a working medium of water-air. The distribution of gas phase bubbles is studied depending on the operating parameters of the apparatus. The value of the local and total gas content, as well as the specific surface of the phase contact, is determined. The gas content and the contact surface of the phases in the downflow pipes of the circulation apparatus with jet injection gas filling are investigated. The use of circulating apparatuses with jet injection gas filling is promising for carrying out mass transfer and reaction mass transfer processes. Due to the use of water energy for gas filling of the reaction space, the devices have advantages over airlift and gas-lift devices, bubble columns in chemisorption processes with slightly soluble gases. Experimental studies of the gas content and the contact surfaces of the phases from the operating-technological and hardware-structural parameters makes it possible to determine the optimal operating conditions. According to the results of studies, it is found that the diameter of the bubbles increases with an increase in the number of revolutions of the shaft of the mixing device. The mode of suspension of the gas phase took place at shaft rotation numbers from 600 rpm up to 750 rpm. With an increase in the number of revolutions, the resistance to the force of bubbling of bubbles increases and the suspension mode switches to the gas-liquid flow circulation mode. The ability to control the gas saturation process due to fluid circulation, regardless of the fluid load of the apparatus, is one of the advantages of the developed design. It is established that the total gas content in the downflow channels varies from 0.07–0.10 to 0.1–0.18, which is typical for gas-liquid devices. The total gas content in the downflow channels of the apparatus is in the range from 100 to 260 m2/m3 of the reaction volume and is typical for most gas-liquid bubblers. The results of studies of the operating modes of the apparatus with jet injection gas filling in the suspension mode of the gas phase can be used to calculate the mass transfer coefficient.
References
- Iablokova, M. A., Sokolov, V. N., Sugak, A. V. (1988). Gidrodinamika i massoperenos pri struinom aerirovanii zhidkostei. Teoreticheskie osnovy khimicheskoi tekhnologi, 6, 734–739.
- Ved, V. V., Iushko, V. L., Pticin, S. G., Iariz, V. A. (2008). Optimizaciia apparaturnogo oformleniia stadii ammonizacii v proizvodstve kompleksnykh mineralnykh udobrenii. Voprosy khimii i khimicheskoi tekhnologi, 1, 159–163.
- Ved, V. V. (2013). Struktura gazorіdinnogo potoku ta rezhimi roboti cirkuliacіinogo aparatu zі strumenevі-іnzhekcіinim gazonapovnenniam. Voprosy khimii i khimicheskoi tekhnologi, 3, 214–219.
- Ramm, V. M. (1976). Absorbcii gazov. Moscow: Khimiia, 656.
- Sokolov, V. N., Domanskii, I. V. (1976). Gazozhidkostnye reaktory. Leningrad: Mashinostroenie, 216.
- Ibragimov, T. S., Chebotar, A. V., Novoselov, A. G. (2012). Proizvodstvo etilovogo spirta v kozhukhotrubnom struino-inzhekcionnom apparate po nizkotemperaturnoi skheme. Tekhnika i tekhnologiia pischevykh proizvodstv, 1 (24), 112–115.
- Iablokova, M. A., Ivanova, O. M., Petrov, S. I. (2010). Utochnennaia matematicheskaia model processa ozonirovaniia vody v inzhekcionno-struinykh aparatakh. Izvestiia Sankt-Peterburgskogo gosudarstvennogo tekhnologicheskogo instituta, 7, 88–93.
- Sivenkov, A. V., Novoselov, A. G. (2008). Gidrodinamicheskii raschet dvizheniia dvukhfaznykh potokov v vertikalnykh trubakh kozhukhotrubnogo struino-inzhekcionnogo apparata (KSIA) protochnogo tipa s dopolnitelnym soplom nad slivom (Chast 1). Izvestiia SPbGUNiPT, 2, 6–10.
- Sokolov, V. N., Iablokova, M. A. (1988). Apparatura mikrobiologicheskoi promyshlennosti. Leningrad: Mashinostroenie. Leningr. otd-nie, 278.
- Kashinskii, O. N., Randin, V. V. (1999). Opusknoe gazozhidkostnoe puzyrkovoe techenie v vertikalnoi trube. Teplofizika i aeromekhanika, 6 (2), 235–246.
- Terekhov, V. I., Pakhomov, M. A. (2008). The effect of bubbles on the structure of flow and the friction in downward turbulent gas-liquid flow. High Temperature, 46 (6), 924–930. doi: http://doi.org/10.1134/s0018151x08060163
- Shalygin, E. V., Leontev, V. K., Abramova, T. E. (2009). Raschet diametra puzyria i parametra effektivnosti dlia gazozhidkostnykh reaktorov s ezhekcionnym dispergirovaniem. Izvestiia vysshikh uchebnykh zavedenii. Seriia: Khimiia i khimicheskaia tekhnologiia, 52 (7), 118–121.
- Mukhametzianova, A. G., Diakonov, G. S., Kulmenteva, E. I., Etrovicheva, E. A. (2004). Processy perenosa i khimicheskogo prevrascheniia pri turbulentnom smeshenii v kanalakh s iskusstvennoi turbulizaciei sredy. Vestnik Kazanskogo tekhnologicheskogo universiteta, 1, 164–171.
- Majumder, S. K., Kundu, G., Mukherjee, D. (2006). Bubble size distribution and gas–liquid interfacial area in a modified downflow bubble column. Chemical Engineering Journal, 122 (1-2), 1–10. doi: http://doi.org/10.1016/j.cej.2006.04.007
- Mandal, A. (2010). Characterization of gas-liquid parameters in a down-flow jet loop bubble column. Brazilian Journal of Chemical Engineering, 27 (2), 253–264. doi: http://doi.org/10.1590/s0104-66322010000200004
- Ohkawa, A., Kawai, Y., Kusabiraki, D., Sakai, N., Endoh, K. (1987). Bubble size, interfacial area and volumetric liquid-phase mass transfer coefficient in downflow bubble columns with gas entrainment by a liquid jet. Journal of Chemical Engineering of Japan, 20 (1), 99–101. doi: http://doi.org/10.1252/jcej.20.99
- Yamagiwa, K., Kusabiraki, D., Ohkawa, A. (1990). Gas holdup and gas entrainment rate in downflow bubble column with gas entrainment by a liquid jet operating at high liquid throughput. Journal of Chemical Engineering of Japan, 23 (3), 343–348. doi: http://doi.org/10.1252/jcej.23.343
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Viktor Ved, Valeriy Nikolsky, Oxsana Okhtina, Vadym Kiselev
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.