Research of gas content and interfacial area in the downflow pipes of a circulation apparatus with jet injection gas filling

Authors

DOI:

https://doi.org/10.15587/2312-8372.2019.180770

Keywords:

jet injection apparatus, downflow, circulation circuit, gas content, phase contact surface

Abstract

The object of research is an apparatus with jet injection gas filling. The studies are conducted on an experimental installation of a working medium of water-air. The distribution of gas phase bubbles is studied depending on the operating parameters of the apparatus. The value of the local and total gas content, as well as the specific surface of the phase contact, is determined. The gas content and the contact surface of the phases in the downflow pipes of the circulation apparatus with jet injection gas filling are investigated. The use of circulating apparatuses with jet injection gas filling is promising for carrying out mass transfer and reaction mass transfer processes. Due to the use of water energy for gas filling of the reaction space, the devices have advantages over airlift and gas-lift devices, bubble columns in chemisorption processes with slightly soluble gases. Experimental studies of the gas content and the contact surfaces of the phases from the operating-technological and hardware-structural parameters makes it possible to determine the optimal operating conditions. According to the results of studies, it is found that the diameter of the bubbles increases with an increase in the number of revolutions of the shaft of the mixing device. The mode of suspension of the gas phase took place at shaft rotation numbers from 600 rpm up to 750 rpm. With an increase in the number of revolutions, the resistance to the force of bubbling of bubbles increases and the suspension mode switches to the gas-liquid flow circulation mode. The ability to control the gas saturation process due to fluid circulation, regardless of the fluid load of the apparatus, is one of the advantages of the developed design. It is established that the total gas content in the downflow channels varies from 0.07–0.10 to 0.1–0.18, which is typical for gas-liquid devices. The total gas content in the downflow channels of the apparatus is in the range from 100 to 260 m2/m3 of the reaction volume and is typical for most gas-liquid bubblers. The results of studies of the operating modes of the apparatus with jet injection gas filling in the suspension mode of the gas phase can be used to calculate the mass transfer coefficient.

Author Biographies

Viktor Ved, Ukrainian State University of Chemical Technology, 8, Gagarina ave., Dnipro, Ukraine, 49005

Senior Lecturer

Department of Equipment of Chemical Plants

Valeriy Nikolsky, Ukrainian State University of Chemical Technology, 8, Gagarina ave., Dnipro, Ukraine, 49005

Doctor of Technical Sciences, Professor

Department of Energetic

Oxsana Okhtina, Ukrainian State University of Chemical Technology, 8, Gagarina ave., Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Organic Substances and Pharmaceuticals

Vadym Kiselev, Ukrainian State University of Chemical Technology, 8, Gagarina ave., Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Organic Substances and Pharmaceuticals

References

  1. Iablokova, M. A., Sokolov, V. N., Sugak, A. V. (1988). Gidrodinamika i massoperenos pri struinom aerirovanii zhidkostei. Teoreticheskie osnovy khimicheskoi tekhnologi, 6, 734–739.
  2. Ved, V. V., Iushko, V. L., Pticin, S. G., Iariz, V. A. (2008). Optimizaciia apparaturnogo oformleniia stadii ammonizacii v proizvodstve kompleksnykh mineralnykh udobrenii. Voprosy khimii i khimicheskoi tekhnologi, 1, 159–163.
  3. Ved, V. V. (2013). Struktura gazorіdinnogo potoku ta rezhimi roboti cirkuliacіinogo aparatu zі strumenevі-іnzhekcіinim gazonapovnenniam. Voprosy khimii i khimicheskoi tekhnologi, 3, 214–219.
  4. Ramm, V. M. (1976). Absorbcii gazov. Moscow: Khimiia, 656.
  5. Sokolov, V. N., Domanskii, I. V. (1976). Gazozhidkostnye reaktory. Leningrad: Mashinostroenie, 216.
  6. Ibragimov, T. S., Chebotar, A. V., Novoselov, A. G. (2012). Proizvodstvo etilovogo spirta v kozhukhotrubnom struino-inzhekcionnom apparate po nizkotemperaturnoi skheme. Tekhnika i tekhnologiia pischevykh proizvodstv, 1 (24), 112–115.
  7. Iablokova, M. A., Ivanova, O. M., Petrov, S. I. (2010). Utochnennaia matematicheskaia model processa ozonirovaniia vody v inzhekcionno-struinykh aparatakh. Izvestiia Sankt-Peterburgskogo gosudarstvennogo tekhnologicheskogo instituta, 7, 88–93.
  8. Sivenkov, A. V., Novoselov, A. G. (2008). Gidrodinamicheskii raschet dvizheniia dvukhfaznykh potokov v vertikalnykh trubakh kozhukhotrubnogo struino-inzhekcionnogo apparata (KSIA) protochnogo tipa s dopolnitelnym soplom nad slivom (Chast 1). Izvestiia SPbGUNiPT, 2, 6–10.
  9. Sokolov, V. N., Iablokova, M. A. (1988). Apparatura mikrobiologicheskoi promyshlennosti. Leningrad: Mashinostroenie. Leningr. otd-nie, 278.
  10. Kashinskii, O. N., Randin, V. V. (1999). Opusknoe gazozhidkostnoe puzyrkovoe techenie v vertikalnoi trube. Teplofizika i aeromekhanika, 6 (2), 235–246.
  11. Terekhov, V. I., Pakhomov, M. A. (2008). The effect of bubbles on the structure of flow and the friction in downward turbulent gas-liquid flow. High Temperature, 46 (6), 924–930. doi: http://doi.org/10.1134/s0018151x08060163
  12. Shalygin, E. V., Leontev, V. K., Abramova, T. E. (2009). Raschet diametra puzyria i parametra effektivnosti dlia gazozhidkostnykh reaktorov s ezhekcionnym dispergirovaniem. Izvestiia vysshikh uchebnykh zavedenii. Seriia: Khimiia i khimicheskaia tekhnologiia, 52 (7), 118–121.
  13. Mukhametzianova, A. G., Diakonov, G. S., Kulmenteva, E. I., Etrovicheva, E. A. (2004). Processy perenosa i khimicheskogo prevrascheniia pri turbulentnom smeshenii v kanalakh s iskusstvennoi turbulizaciei sredy. Vestnik Kazanskogo tekhnologicheskogo universiteta, 1, 164–171.
  14. Majumder, S. K., Kundu, G., Mukherjee, D. (2006). Bubble size distribution and gas–liquid interfacial area in a modified downflow bubble column. Chemical Engineering Journal, 122 (1-2), 1–10. doi: http://doi.org/10.1016/j.cej.2006.04.007
  15. Mandal, A. (2010). Characterization of gas-liquid parameters in a down-flow jet loop bubble column. Brazilian Journal of Chemical Engineering, 27 (2), 253–264. doi: http://doi.org/10.1590/s0104-66322010000200004
  16. Ohkawa, A., Kawai, Y., Kusabiraki, D., Sakai, N., Endoh, K. (1987). Bubble size, interfacial area and volumetric liquid-phase mass transfer coefficient in downflow bubble columns with gas entrainment by a liquid jet. Journal of Chemical Engineering of Japan, 20 (1), 99–101. doi: http://doi.org/10.1252/jcej.20.99
  17. Yamagiwa, K., Kusabiraki, D., Ohkawa, A. (1990). Gas holdup and gas entrainment rate in downflow bubble column with gas entrainment by a liquid jet operating at high liquid throughput. Journal of Chemical Engineering of Japan, 23 (3), 343–348. doi: http://doi.org/10.1252/jcej.23.343

Published

2019-07-12

How to Cite

Ved, V., Nikolsky, V., Okhtina, O., & Kiselev, V. (2019). Research of gas content and interfacial area in the downflow pipes of a circulation apparatus with jet injection gas filling. Technology Audit and Production Reserves, 4(1(48), 34–38. https://doi.org/10.15587/2312-8372.2019.180770

Issue

Section

Reports on research projects