Chlorine and hydrogen chloride gas emissions cleaning in vinylchloride production

Authors

  • Роман Вікторович Гармаш National Technical University of Ukraine "Kyiv Polytechnic Institute" Ave Pobedy 37, building 4, Kyiv, 03056, Ukraine

DOI:

https://doi.org/10.15587/2312-8372.2013.18212

Keywords:

band model, absorption, chemisorption, chlorine, hydrogen chloride

Abstract

The paper gives the data on mathematical modeling of simultaneous absorption of chlorine and hydrogen chloride by alkaline solutions. The mathematical model of the process includes the system of differential equations of component-wise material balance and the system of kinetic equations. The system of material balance equations describes the change in concentrations of components along the column height. For its solving it is necessary to know the numerical values of chemisorption acceleration coefficients. They are determined from the system of equations describing the inetics of chemisorption. The gradients of components oncentrations create various conditions of mass transfer processes along the height of the column. This leads to the fact that in one unit there can be various zones of hemisorption process along the height of the packed layer. Each zone is characterized by its reaction order for absorbing component and its kinetic constants. Various zones of the course of binary absorption with chemical reaction were considered. Taking into account the zones, the mathematical model of chemisorption was designed for the countercurrent packed absorber. The peculiarity of the developed mathematical model is the lack of iterative algorithm for calculation. The use of band mathematical model of chemisorption of two gases allows calculation of similar columns at the stages of design and research of industrial processes. The results can be used for calculation and optimization of existing columns of gas emission neutralization in organochlorine production.

Author Biography

Роман Вікторович Гармаш, National Technical University of Ukraine "Kyiv Polytechnic Institute" Ave Pobedy 37, building 4, Kyiv, 03056

Bachelor

Department of Cybernetics of Chemical Technology Processes

References

  1. Астарита, Дж. Массопередача с химичекой реакцией [Текст] / Дж. Астарита. Пер. с англ. М.И.Балашова – Л.: Химия, 1971. – 224 с.
  2. Данквертс, П.В. Газо – жидкостные реакции [Текст] / П.В.Данквертс. Пер. с англ. И.А.Гильденблата – М.: Химия, 1973. – 296 с.
  3. Шервуд, Т. Массопередача [Текст] / Т. Шервуд, Р. Пигфорд, Ч. Уилки. Пер. с англ. Н.Н.Кулова – М.: Химия, 1982. – 696 с.
  4. Аксельрод, Ю.В. Газожидкостные хемосорбционные процессы [Текст] / Ю.В. Аксельрод – М.: Химия, 1989. – 240 с.
  5. Рамм, В.М. Абсорбция газов [Текст] / В.М. Рамм. Изд. 2-е, переработ. и доп. – М.: Химия, 1976. – 656 с.
  6. Noeres, C. Modelling of reactive separation processes: reactive absorption and reactive distillation [Tekst] / C. Noeres, E. Kenig, A. Gorak – Chemical Engineering and Processing, 2003, 42. – p. 157 – 178.
  7. Kenig, E. Rigorous dynamic modelling of complex reactive absorption processes [Tekst] / E. Kenig, R. Schneider, A. Gorak – Chem. Eng. Sci., 1999, 54. – p. 5195 – 5203.
  8. Bugaeva, L.N. An application of expert system to choice, simulation and development of gases purification processes [Tekst] / L.N. Bugaeva, Yu.A. Beznosik, G.A. Statjukha, A.A. Kvitka – J. Computers Chem. Engng, 1996, Vol. 20, Suppl. – p. S401 – S402.
  9. Безносик, Ю.А. Математическое моделирование процесса нейтрализации в производстве хлорметанов [Текст] / Ю,А. Безносик, А.Г. Бондарь, Г.А. Статюха. – Химичекая технология, 1980, № 1. – с. 48 – 50.
  10. Безносик, Ю.А. Абсорбция хлора и хлористого водорода из отходящих газов в производстве хлорметанов [Текст] / Ю.А. Безносик, Т.В. Бойко. – Химическое машиностроение: Респ. Межвед. Науч. – техн. Сб., 1981, вып. 34. – с. 77 – 82.
  11. Реутский, В.А. Процессы хемосорбции [Текст] / В.А. Реутский. – В кн.: Итоги науки и техники. Сер. Процессы и аппараты химической технологии, том 4. – М.: ВИНИТИ, 1976. – с. 5 – 81.
  12. Astarita G. (1967) Mass transfer with chemical reaction. – L.: Chemistry, 224.
  13. Danckwerts P.V. (1970) Gas – Liquid Reaction. – M.: Chemistry, 296.
  14. Sherwood T., Pigford R., Wilke C. (1975) Mass Transfer. – M.: Chemistry, 696.
  15. Akselrod Y. (1989) Gas-liquid chemisorption processes. – M.: Chemistry, 240.
  16. Ramm V. (1976) The absorption of gases. – M.: Chemistry, 656.
  17. Noeres C., Kenig E., Gorak A. (2003) Modelling of reactive separation processes: reactive absorption and reactive distillation. – Chemical Engineering and Processing, v.42, 157 – 178.
  18. Kenig E., Schneider R., Gorak A. (1999) Rigorous dynamic modelling of complex reactiive absorption processes. – Chem. Eng. Sci., v.54, 5195 – 5203.
  19. Bugaeva L.N., Beznosik Yu.A., Statjukha G.A., Kvitka A.A. (1996) An application of expert system to choice, simulation and development of gases purification processes. – J. Computers Chem. Engng, v.20, Suppl., S401 – S402.
  20. Beznosyk Yu., Bondar A., Statukha G. (1980) Mathematical modeling of the neutralization process in the production of chloromethanes. – Himichekaya technology, № 1, 48 – 50.
  21. Beznosyk Yu., Boyko T.V. (1981) Absorption of chlorine and hydrogen chloride from the flue gases in the production of chloromethanes. – Chemical engineering, v.34, 77 – 82.
  22. Reutskiy V.A. (1976) Chemisorption processes. – In.: Results of Science and Technology: Processes and devices of chemical technologies.v.4., M.: VINITI, 5 – 81.

Published

2013-10-28

How to Cite

Гармаш, Р. В. (2013). Chlorine and hydrogen chloride gas emissions cleaning in vinylchloride production. Technology Audit and Production Reserves, 5(4(13), 8–10. https://doi.org/10.15587/2312-8372.2013.18212