Exergy analysis of a cogeneration system for utilization of waste heat of industrial enterprises

Authors

  • Mikhail Kuznetsov A. Podgorny Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine, 2/10, Pozharsky str., Kharkiv, Ukraine, 61046, Ukraine https://orcid.org/0000-0002-5180-8830
  • Dionis Kharlampidi A. Podgorny Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine, 2/10, Pozharsky str., Kharkiv, Ukraine, 61046, Ukraine https://orcid.org/0000-0003-4337-6238
  • Victoria Tarasova A. Podgorny Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine, 2/10, Pozharsky str., Kharkiv, Ukraine, 61046, Ukraine https://orcid.org/0000-0003-3252-7619

DOI:

https://doi.org/10.15587/2312-8372.2019.183883

Keywords:

exergy analysis, steam turbine plant, absorption heat pump, waste heat utilization

Abstract

The object of research is the energy processes occurring in the cogeneration system for the utilization of waste heat of industrial enterprises, consisting of a steam turbine plant and an absorption heat pump. One of the most problematic places during the development and design of such systems is that the thermal calculation of absorption heat pumps as a whole is a rather difficult task. This is due to the presence of several interconnected heat exchangers and the complexity of the thermodynamic and mass transfer processes occurring in them. During the research, modern methods of analysis of thermodynamic systems were used, based on the application of the theoretical apparatus of technical thermodynamics and the theory of heat and mass transfer. On the basis of mathematical modeling of heat and mass transfer processes for the cogeneration system under consideration, a software package for calculating its thermodynamic and exergy characteristics is built with the aim of conducting numerical studies of its energy efficiency indicators. A database is obtained for calculating the thermophysical properties of a water-ammonia solution taking into account changes in its concentration to identify the solution state parameters at the nodal points of the cycles. Based on a numerical experiment, the energy and exergy parameters of the system are analyzed with a variation of 4 factors:

1) condensation temperature of the spent water steam in a steam turbine plant;

2) heating process water temperature at the inlet to the steam generator of the steam turbine plant;

3) reverse delivery water temperature at the inlet to the heat pump;

4) mass flow rate of delivery water.

A generalized regression equation of the functional relationship of the exergy efficiency of the elements of the cogeneration system and the entire system as a whole is obtained. The impact coefficients of exergy efficiency of elements on the thermodynamic perfection of the entire system are analyzed. Thanks to the method of exergy analysis used in the research, it is possible to identify the nature of external and internal losses both in cycles in general and in individual elements of the cogeneration system under consideration. And also the ways to improve its scheme and design are outlined.

Author Biographies

Mikhail Kuznetsov, A. Podgorny Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine, 2/10, Pozharsky str., Kharkiv, Ukraine, 61046

PhD, Researcher

Department of Thermal Process Modeling and Identification

Dionis Kharlampidi, A. Podgorny Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine, 2/10, Pozharsky str., Kharkiv, Ukraine, 61046

Doctor of Technical Sciences, Leading Researcher

Department of Thermal Process Modeling and Identification

Victoria Tarasova, A. Podgorny Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine, 2/10, Pozharsky str., Kharkiv, Ukraine, 61046

PhD, Senior Researcher

Department of Thermal Process Modeling and Identification

References

  1. Psakhis, B. I. (1984). Metody ekonomii sbrosnogo tepla. Novosibirsk: Zapadno-Sibirskoe knizhnoe izdatelstvo, 160.
  2. Orekhov, I. I., Timofeevskii, L. S., Karavan, S. V. (1989). Absorbcionnye preobrazovateli teploty. Leningrad: Khimiia, 207.
  3. Galimova, L. V. (1997). Absorbcionnye kholodilnye mashiny i teplovye nasosy. Astrakhan: AGTU, 226.
  4. Shubenko, A. L., Babak, N. U., Seneckiy, A. V., Malyarenko, V. A. (2012). Utilization of waste warmth of technological processes of the industrial enterprise for the purpose of electric power development. Energosberezhenie. Energetika. Energoaudit, 7 (101), 23–29.
  5. Peris, B., Navarro-Esbrí, J., Molés, F., Mota-Babiloni, A. (2015). Experimental study of an ORC (organic Rankine cycle) for low grade waste heat recovery in a ceramic industry. Energy, 85, 534–542. doi: http://doi.org/10.1016/j.energy.2015.03.065
  6. Van de Bor, D. M., Infante Ferreira, C. A., Kiss, A. A. (2015). Low grade waste heat recovery using heat pumps and power cycles. Energy, 89, 864–873. doi: http://doi.org/10.1016/j.energy.2015.06.030
  7. Vedil, S. N., Kumar, A., Mahto, D. (2014). Waste heat Utilization of vapour compression cycle. International Journal of Scientific and Research Publications, 4 (1), 444–450. doi: http://doi.org/10.23883/ijrter.2018.4376.dmnam
  8. Singh, S., Dasgupta, M. S. (2017). CO 2 heat pump for waste heat recovery and utilization in dairy industry with ammonia based refrigeration. International Journal of Refrigeration, 78, 108–120. doi: http://doi.org/10.1016/j.ijrefrig.2017.03.009
  9. Zhang, G., Li, Sh., Jiang, H., Xie, G. (2015). Application of Radial Heat Pipe to Heat Recovery of Flue Gas. Рroceedings of 5th International Conference on Advanced Engineering Materials and Technology, 282–285. doi: http://doi.org/10.2991/icaemt-15.2015.56
  10. Remeli, M. F., Kiatbodin, L., Singh, B., Verojporn, K., Date, A., Akbarzadeh, A. (2015). Power Generation from Waste Heat Using Heat Pipe and Thermoelectric Generator. Energy Procedia, 75, 645–650. doi: http://doi.org/10.1016/j.egypro.2015.07.477
  11. Utlu, Z., Önal, B. S. (2018). Thermodynamic analysis of thermophotovoltaic systems used in waste heat recovery systems: an application. International Journal of Low-Carbon Technologies, 13 (1), 52–60. doi: http://doi.org/10.1093/ijlct/ctx019
  12. Qin, P., Chen, H., Chen, L., Wang, C., Liu, X., Hu, X. et. al. (2013). Analysis of recoverable waste heat of circulating cooling water in hot-stamping power system. Clean Technologies and Environmental Policy, 15 (4), 741–746. doi: http://doi.org/10.1007/s10098-012-0557-3
  13. Chepurnoi, M. N., Rezident, N. V. (2013). Primenenie parokompressionnykh teplonasosnykh ustanovok dlia utilizacii sbrosnoi teploty kondensatorov parovykh turbin. Naukovі pracі VNTU, 4, 1–7.
  14. Kostiuk, A. G., Frolov, V. V., Bulkin, A. E., Trukhnii, A. D. (2001). Turbiny teplovykh i atomnykh elektricheskikh stancii. Moscow: Izdatelstvo MEI, 488.
  15. Stoletov, V. M. (2007). Teoreticheskie osnovy kholodilnoi tekhniki. Kemerovo: KTIPP, 88.
  16. Timofeevskii, L. S. (1997). Kholodilnye mashiny. Saint Petersburg: Politehnika, 992.
  17. Bogdanov, S. N., Burcev, S. I., Ivanov, O. P., Kupriianova, A. V. (1999). Kholodilnaia tekhnika. Kondicionirovanie vozdukha. Svoistva veschestv. Saint Petersburg: SPbGAKHPT, 320.
  18. Sakun, I. A. (1987). Teplovye i konstruktivnye raschety kholodilnykh mashin. Leningrad: Mashinostroenie, 423.
  19. Komarov, N. S. (1953). Spravochnik kholodilschika. Kyiv: Gosudarstvennoe izdatelstvo tekhnicheskoi literatury USSR, 396.
  20. Brodianskii, V. M. (1988). Eksergeticheskii metod i perspektivy ego razvitiia. Teploenergetika, 2, 14–17.
  21. Morosuk, T., Tsatsaronis, G. (2008). A new approach to the exergy analysis of absorption refrigeration machines. Energy, 33 (6), 890–907. doi: http://doi.org/10.1016/j.energy.2007.09.012
  22. Morosuk, L. I., Grudka, B. G. (2017). Introduction to the Exergy Analysis of Absorption-Resorption Refrigeration Machine. Refrigeration Engineering and Technology, 53 (1), 4–10. doi: http://doi.org/10.15673/ret.v53i1.533
  23. Kuznecov, M. A. (2012). Termoekonomicheskii analiz teplonasosnoi sushilnoi ustanovki. Problemy mashinostroeniia, 15 (1), 36–42.
  24. Kuznetsov, M., Kharlampidi, D., Tarasova, V., Voytenko, E. (2016). Thermoeconomic optimization of supercritical refrigeration system with the refrigerant R744 (CO2). Eastern-European Journal of Enterprise Technologies, 6 (8 (84)), 24–32. doi: http://doi.org/10.15587/1729-4061.2016.85397
  25. Kharlampidi, D. Kh., Tarasova, V. A., Kuznetsov, M. A. (2015). Advanced techniques of thermodynamic analysis and optimization оf refrigeration units. Industrial Gases, 6, 55–64. doi: http://doi.org/10.18198/j.ind.gases.2015.0802
  26. Macevitii, Iu. M., Kharlampidi, D. Kh., Tarasova, V. A., Kuznecov, M. A. (2016). Termoekonomicheskaia diagnostika i optimizaciia parokompressornykh termotransformatorov. Kharkiv: ChP «Tekhnologicheskii Centr», 160.
  27. Kharlampidi, D., Tarasova, V., Kuznetsov, M., Voytenko, E. (2017). Thermodynamic analysis of air-compression refrigerating machine based on the exergy cost theory. Eastern-European Journal of Enterprise Technologies, 5 (8 (89)), 30–38. doi: http://doi.org/10.15587/1729-4061.2017.112113

Published

2019-07-25

How to Cite

Kuznetsov, M., Kharlampidi, D., & Tarasova, V. (2019). Exergy analysis of a cogeneration system for utilization of waste heat of industrial enterprises. Technology Audit and Production Reserves, 5(1(49), 10–21. https://doi.org/10.15587/2312-8372.2019.183883

Issue

Section

Technology and System of Power Supply: Original Research