Linearly elastic suspension of the float gyroscope in the acoustic field

Authors

  • Галина Владимировна Бойко National technical university of Ukraine is the "Kyiv polytechnic institute" Avenue Victories, 37, Kyiv, Ukraine, 03056, Ukraine

DOI:

https://doi.org/10.15587/2312-8372.2013.19534

Keywords:

float suspension of gyroscope, coordinate functions, elastic state, meridian line

Abstract

The system of differential equations of float suspension of a gyroscope, in motions in the absence of transmission of the energy of flexural motion of the shell part on the end-walls is constructed.

The most general case of elastic motions of the suspension surface is considered, a three-dimensional problem - elastic motions along the extension, along the parallel and in the transverse plane (the plane of the frame). The meridian line is assumed to be arbitrarily delineated.

Differential equations of gyroscope suspension in the dimensionless form are derived. As a special case, the equations of the float in the form of a circular cylinder are obtained.

All preliminary works on the creation of a mathematical model with a further solution of the optimization problems of the shell surface of the suspension on the basis of Fourier and Bubnov-Galerkin methods are performed. After the definition of coordinate functions in general form, there is a possibility of further studies involving software.

The presence of spatial mathematical model of gyroscope suspension creates conditions for the choice of technical solutions on reduction of the impact of acoustic fields on the suspension and on the gyroscope accuracy, in particular.

Author Biography

Галина Владимировна Бойко, National technical university of Ukraine is the "Kyiv polytechnic institute" Avenue Victories, 37, Kyiv, Ukraine, 03056

Applicant

Department of biotech and engineering

References

  1. Сайдов, В. П. Теория гироскопов [Текст] :учеб. пособие / В. П. Сайдов. – М.: Высш. шк., 1965. –378с.
  2. Ягодкин, В. В. Гироприборы баллистических ракет [Текст]: учеб. пособие / В. В. Ягодкин, Г. А. Хлебников. – М.: Воениздат, 1967. – 197 с.
  3. Данилин, В. П. Гироскопические приборы [Текст]: учеб. пособие / В. П. Данилин. – М.: Высш. шк., 1965. – 539 с.
  4. Браславский, Д. А. Авиационные приборы [Текст]: учеб. пособие / Д. А. Браславский, С. С. Логунов, Д. С. Пельпор. – М.: Машиностроение, 1965. – 561 с.
  5. Ригли, У. Теория, проектирование и испытания гироскопов [Текст]: пер. с англ. / У. Ригли, У. Холлистер, У. Денхард. – М.: Мир, 1972. – 416 с.
  6. Denhard, W. G. Laboratory Testing of Floated Single-Degree-of-Freedom Integrating Inertial Gyro [Text] / W. G. Denhard; J. Rossbach (Ed) // Instrumentation Laboratory, Massachusetts Institute of Technology. – Cambridge, Mass. – September, 1966. – Part III, Appendix 7. – R-105.
  7. Karachun, V. V. Influence of Diffraction Effects of the Inertial Sensors of a Gyroscopically Stadilized Platform: Three – Dimensional Problem [Text] / V. V. Karachun, V. N. Mel'nick // Int. Appl. Mech. – 2012. – Vol. 48(4). – P. 458-464.
  8. Mel’nick, V. N. The loss of energy of acoustic waves [Text] : материали за vi международна научна практична конференция София,17-25 април 2010 r. / V. N. Mel'nick, V. V. Karachun, O. I. Levchenko // Основи проблеми на съвременната наука-2010. – Str. 66-68.
  9. Dyer, I. Noise environments of flight vehicles [Text]/ I. Dyer // NOISE Control. – 1960. – Vol.6, №1. – P. 31-40.
  10. Heckl, M. A. Vibrations of point-driven cylindrical shells [Text] / M. A. Heckl // J. Acoustic Soc. Am. – 1962. – Vol.34, №10. – P. 1553-1557.
  11. Maidanik, Ct. Response of ribbed panels to reverberant acoustic fields [Text] / Ct. Maidanik // J. Acoustic Soc. Am. – 1962. – Vol.34, №6. – P. 809-826.
  12. Smith, P. W. Response and radiation of structural modes excited by sound [Text] / P. W. Smith // J. Acoustic Soc. Am. – 1962. – Vol.34, №5. – P. 640-647.
  13. Sajdov, V. P. (1965). The theory of gyroscopes. Moscow, USSR: High school, 378.
  14. Yagodkin, V. V., Khlebnikov, G. A. (1967). Gyroscopic devices of ballistic missiles. Moscow, USSR: Military Publishing, 197.
  15. Danilin, V. P. (1965). Gyroscopic instruments. Moscow, USSR: High school, 539.
  16. Braslavskij, D. A., Logunov, S. S., Pelpor, D. S. (1965). Aircraft Instruments. Moscow, USSR: Mechanical Engineering, 561.
  17. Wrigley, W., Hollister, W., Denhardt, W. (1972). The theory, design and testing of gyroscopes. Moscow, USSR: Mir, 416.
  18. Denhard, W. G.; In: Rossbach, J. (1966). Laboratory Testing of Floated Single-Degree-of-Freedom Integrating Inertial Gyro. USA, Cambridge: Massachusetts Institute of Technology, R-105.
  19. Karachun, V. V., Mel'nick, V. N. (2012). Influence of Diffraction Effects on the Inertial Sensors of a Gyroscopically Stabilized Platform: Three –Dimensional Problem. International Applied Mechanics, 48 (4), 458-464.
  20. Mel’nick, V. N., Karachun, V. V., Levchenko, O. I. (2010). The loss of energy of acoustic waves. «The main problems of modern science-2010». Sofia, Bulgaria, 66-68.
  21. Dyer, I. (1960). Noise environments of flight vehicles. NOISE Control, 6 (1), 31-40.
  22. Heckl, M. A. (1962). Vibrations of point-driven cylindrical shells. Journal Acoustic Soc. Am., 34 (10), 1553-1557.
  23. Maidanik, Ct. (1962). Response of ribbed panels to reverberant acoustic fields. Journal Acoustic Soc. Am., 34 (6), 809-826.
  24. Smith, P. W. (1962). Response and radiation of structural modes excited by sound. Journal Acoustic Soc. Am., 34 (5), 640-647.

Published

2013-11-28

How to Cite

Бойко, Г. В. (2013). Linearly elastic suspension of the float gyroscope in the acoustic field. Technology Audit and Production Reserves, 6(1(14), 7–10. https://doi.org/10.15587/2312-8372.2013.19534

Issue

Section

Technology audit