Selection of alternative solutions in the optimization problem of network diagrams of project implementation

Authors

DOI:

https://doi.org/10.15587/2706-5448.2020.210848

Keywords:

network diagram, alternative solutions, central compositional orthogonal design, peak load intensity, uneven workload of personnel.

Abstract

The object of research is a model network diagram of the project implementation in the form of a diagram, in which individual operations are represented by arcs, and vertices are considered as events corresponding to the beginning and end of operations. The term «model» is understood as an arbitrary network diagram, in relation to the parameters of which the solution is already known.

One of the most problematic areas is the lack of substantiated methods of formalizing the task of optimizing network diagrams, allowing for a targeted selection of early start dates for individual operations within the project, ensuring optimal solutions for the selected criteria. In this study, such criteria are the possibility of shifting the operation with the maximum intensity in a given time interval, and the uniformity of the workload of personnel, assessed by the ratio of the maximum and minimum intensities y=qmax/qmin for the analyzed version of the network diagram.

Methods of network planning and management, mathematical experimental planning and optimization methods are used.

The results obtained confirm the possibility of using the proposed methods for solving optimization problems with respect to arbitrary network diagrams. This is due to the fact that the proposed methods for optimizing network diagrams allow one to obtain regression equations that serve as mathematical models for making targeted decisions on the choice of early start dates for operations that provide the best results in relation to the selected optimization criteria for network diagram.

The features of the proposed solutions are: conditions for the selection of input variables, a procedure for the targeted selection of early start dates for operations with the highest load intensity of personnel, and providing optimal solutions for the criterion of minimizing uneven load. Thanks to these features, it is possible to optimize network diagrams with arbitrary source data. To do this, it is enough to apply the proposed procedure for your version of the network diagram, having previously estimated possible alternatives with respect to the choice of significantly influencing input variables and the intervals of their variation.

Author Biography

Olena Domina, Scientific Route OÜ Narva mnt 7-634, Tallinn, Estonia, 10117

Member of the Board

References

  1. Gasanbekov, S. K., Lubenets, N. A. (2014). Setevoe planirovanie kak instrument upravleniia proektami. Izvestiia MGTU «MAMI», 5 (1 (19)), 21–25.
  2. Butsenko, E. V., Shorikov, A. F. (2015). Setevoe modelirovanie protsessa upravleniia investitsionnym proektirovaniem i ego prilozheniia. Nauchno-tekhnicheskie vedomosti SPbGPU. Ekonomicheskie nauki, 6 (233), 233–244. doi: http://doi.org/10.5862/je.233.24
  3. Musatova, T. E. (2016). Primenenie grafoanaliticheskogo metoda v investitsionnom proektirovanii. Traektoriia nauki, 4 (9), 7.1–7.12.
  4. Butsenko, E. V. (2016). Praktika primeneniia setevogo ekonomiko-matematicheskogo modelirovaniia protsessa investitsionnogo proektirovaniia. Vestnik Tomskogo gosudarstvennogo universiteta. Ekonomika, 1 (33), 147–158.
  5. Popova, I. N., Anikina, D. L. (2018). Mekhanizm upravleniia i optimizatsii investitsionnogo proekta s ispolzovaniem metoda setevogo modelirovaniia. Diskussiia, 91, 6–16.
  6. Akhtiamov, R. G., Elizarev, A. N., Vdovina, I. V., Planida, IU. M., KHaertdinova, E. S. (2012). Primenenie setevykh modelei pri planirovanii avariino-spasatelnykh i drugikh neotlozhnykh rabot. Nauchnye i obrazovatelnye problemy grazhdanskoi zaschity, 2, 29–34.
  7. Demina, A. V., Aleksentseva, O. N. (2017). Ispolzovanie setevogo planirovaniia dlia organizatsii uchebnogo protsessa. Vestnik Saratovskogo gosudarstvennogo sotsialno-ekonomicheskogo universiteta, 1 (65), 16–18.
  8. Bashtannik, N. A., Lobeiko, V. I., Poliakov, S. V. (2010). Optimizatsiia putei obmena informatsiei mezhdu elementami ASU setevym metodom. Izvestiia VolgGTU, 6 (66), 48–51.
  9. Wang, Y., Chen, J., Ning, W., Yu, H., Lin, S., Wang, Z. et. al. (2020). A time-sensitive network scheduling algorithm based on improved ant colony optimization. Alexandria Engineering Journal. doi: http://doi.org/10.1016/j.aej.2020.06.013
  10. Akberdina, V. V., Smirnova, O. P. (2017). Kontseptsiia setevykh sopriazhennykh proizvodstv v kontekste chetvertoi promyshlennoi revoliutsii. Vestnik ZabGU, 23 (7), 104–113.
  11. Galper, J. (2001). Three Business Models for the Stock Exchange Industry. The Journal of Investing, 10 (1), 70–78. doi: http://doi.org/10.3905/joi.2001.319454
  12. Judith, G., Mark, G. (2003). The US Wine Industry and the Internet: An Analysis of Success factors for Online Business models. Electronic Markets, 13 (1), 59–66. doi: http://doi.org/10.1080/1019678032000039877
  13. Bobrova, T. V., Dubenkov, A. A. (2017). Kalendarno-setevoe planirovanie stroitelstva lineinykh obektov v srede MSProject. Vestnik SibADIB, 4-5 (56-57), 68–77.
  14. Chavada, R., Dawood, N., Kassem, M. (2012). Construction workspace management: the development and application of a novel nD planning approach and tool, Journal of Information. Technology in Construction (ITcon), 17, 213–236. Available at: http://www.itcon.org/2012/13
  15. Ting, W., Ying, Y. K., Xiao, L. P. (2013). The Impact of BIM Application to the Project Organizational Process. Applied Mechanics and Materials, 357-360, 2524–2528. doi: http://doi.org/10.4028/www.scientific.net/amm.357-360.2524
  16. Moon, H., Dawood, N., Kang, L. (2014). Development of workspace conflict visualization system using 4D object of work schedule. Advanced Engineering Informatics, 28 (1), 50–65. doi: http://doi.org/10.1016/j.aei.2013.12.001
  17. Korshunov, Iu. M. (1980). Matematicheskie osnovy kibernetiki. Moscow: Energiia, 424.
  18. Karenov, R. S. (2013). Metodika analiza i optimizatsii setevogo grafika. Vestnik Karagandinskogo universiteta. Seriia «Matematika», 3 (71), 53–65.
  19. Postovalova, I. P. (2014). Effektivnii sintez setevoi modeli «raboty-dugi» s minimalnym chislom fiktivnykh rabot. Upravlenie bolshimi sistemami, 52, 118–132.
  20. Ivanov, N. N. (2015). Analitiko-imitatsionnoe modelirovanie obobschennykh stokhasticheskikh setevykh grafikov. Upravlenie bolshimi sistemami, 53, 27–44.
  21. Shorikov, A. F., Butsenko, E. V. (2015). Metodika optimizatsii investitsionnog proektirovaniia na osnove setevogo modelirovaniia i ee prilozheniia. Vestnik Permskogo universiteta. Ekonomika, 4 (27), 62–70.
  22. Rygalov, G. M. (2010). modelirovanie sistemy setevogo planirovaniia v microsoft project. Transportnoe delo Rossii, 58–64. Available at: http://cyberleninka.ru/article/n/modelirovanie-sistemy-setevogo-planirovaniya-v-microsoft-project
  23. Kushner, M. A. (2010). Model minimizatsii srokov vypolneniia proekta v ramkakh setevykh tekhnologii pri fiksirovannom biudzhete. Vestnik AGTU. Seriia Ekonomika, 2, 124–129.
  24. Tikhobaev, V. M., Tolokonnikova, L. A., SHatokhina, A. G. (2010). Optimizatsiia plana kompleksa rabot pri vzaimozameniaemykh resursakh s ispolzovaniem setevogo grafika. Izvestiia Tulskogo gosudarstvennogo universiteta. Ekonomicheskie i iuridicheskie nauki, 2-2, 143–150.
  25. Shmat, V. V., Iuva, D. S. (2017). Razrabotka metodiki risk-optimalnogo planirovaniia dlia innovatsionnogo proekta v neftegazovom sektore. Innovatsii, 6 (224), 113–121.
  26. Epstein, M. (2002). Risk Management of Innovative R&D Project. Helsinki: School of Economics, 273.
  27. A guide to the project management body of knowledge (PMBOK Guide). (2016). Newtown Square: Project Management Institute, 615. Available at: http://www.pmi.org/PMBOK-GuideandStandards/pmbok-guide.aspx
  28. Hartman, K., Leckiy, E., Shefer, V. et. al. (1977). Planirovanie ehksperimenta v issledovanii tekhnologicheskih processov. Moscow: Mir, 552.
  29. Demin, D. (2017). Synthesis of optimal control of technological processes based on a multialternative parametric description of the final state. Eastern-European Journal of Enterprise Technologies, 3 (4 (87)), 51–63. doi: http://doi.org/10.15587/1729-4061.2017.105294

Downloads

Published

2020-08-31

How to Cite

Domina, O. (2020). Selection of alternative solutions in the optimization problem of network diagrams of project implementation. Technology Audit and Production Reserves, 4(4(54), 9–22. https://doi.org/10.15587/2706-5448.2020.210848

Issue

Section

Economic Cybernetics: Original Research