Maximum values of total differentials and linear hulls of block symmetric ciphers

Authors

  • Константин Евгеньевич Лисицкий Kharkiv National University of Radio Electronics, ave. Lenina 14, Kharkov, Ukraine

DOI:

https://doi.org/10.15587/2312-8372.2014.21230

Keywords:

random permutation, block symmetric ciphers, provable security indicators

Abstract

The approach to obtaining the estimates of provable block symmetric ciphers security against differential and linear cryptanalysis attacks, represented by the maximum values of differential and linear probabilities of multi-cycle enciphering transformations is proposed in the paper. The main objective of the research is to obtain the design ratios to calculate these indicators. As it is known, today these indicators are represented as estimated values, significantly differing from true that was determined using the new methodology for estimating the indicators of provable block symmetric ciphers security against differential and linear cryptanalysis attacks, developed recently. The basic mathematical apparatus of the random permutation theory is described, and the calculation results of provable security indicators, obtained using this mathematical apparatus for ciphers with 128-bit input, and in particular for the cipher Rijndael and ciphers, presented at the recent Ukrainian competition are given in the paper. The obtained results allow to obtain more objective data on ciphers security indicators, which can be used for improving the quality of expert solutions and conclusions on the improvement degree of the projects, submitted to the contest, as well as for selecting new promising solutions and developments on building ciphers. It is concluded that all these ciphers have the same parameters both for the differential and linear properties, almost equal to 2-121.

Author Biography

Константин Евгеньевич Лисицкий, Kharkiv National University of Radio Electronics, ave. Lenina 14, Kharkov

Department of Information Technology Security

References

  1. Лисицкая, И. В. Методология оценки стойкости блочных симметричных шифров [Текст]/ И. В. Лисицкая // Автоматизированные системы управления и приборы автоматики. – 2011. – № 163. – C. 123-133.
  2. Лисицкая, И. В. Сравнение по эффективности суперблоков некоторых современных шифров [Текст]/ И. В. Лисицкая // Радіоелектроніка. Інформатика. Управління. - Запоріжжя, 2012. – №1(26) . – С. 37-43.
  3. Горбенко, И. Д. Новая идеология оценки стойкости блочных симметричных шифров к атакам дифференциального и линейного криптоанализа [Текст]/ И. Д. Горбенко, В. И. Долгов, И. В. Лисицкая, Р. В. Олейников // Прикладная радиоэлектроника. – 2010. – Т. 9, № 3. – С. 212-320.
  4. Лисицкая, И. В. Методология оценки стойкости блочных симметричных криптопреобразований на основе уменьшенных моделей [Текст]: дисc. … докт. тех. наук: 05.13.05 / И. В. Лисицкая. - 2012. - 293 с.
  5. Baignoires, T. Proving the Security of AES Substitution-Permutation Network [Electronic resource]/ Thomas Baignoires, Serge Vaudenay. - 2004. - 16 p. - Available at: www/URL: http://lasecwww.epfl.ch.
  6. Keliher, L. Toward Provable Security Against Differential and Linear Cryptanalysis for Camellia and Related Ciphers [Text]/ Liam Keliher //International Journal of Network Security. - Sept. 2007. - Vol.5, No.2. - P.167–175.
  7. Keliher, L. New method for upper bounding the maximum average linear hull probability for SPNs [Text]/ L. Keliher, H. Meier, S. Tavares // Advances in Cryptology. EUROCRYPT 2001, LNCS 2045. - Springer-Verlag, 2001. - P. 420-436.
  8. Keliher, L. Improving the upper bound on the maximum average linear hull probability for Rijndael [Text]/ L. Keliher, H. Meijer, S. Tavares; S. Vaudenay, A. M. Youssef (Eds.) // Advances in Cryptology, Selected Areas in Cryptography’01, LNCS 2259. - Springer-Verlag, 2001. - P. 112-128.
  9. Алексийчук, А. Н. Оценки практической стойкости блочного шифра "Калина" относительно методов разностного, линейного криптоанализа и относительно алгебраических атак, основанных на гомоморфизмах [Текст]/ А. Н. Алексийчук, Л. В. Ковальчук, Е. В. Скрыпник, А. С. Шевцов // Прикладная радиоэлектроника. – 2008. – Т.7, №3. – С. 203-209.
  10. Sano, F. On the Security of Nested SPN Cipher against the Differential and Linear Cryptanalysis [Text]/ F. Sano, K. Ohkuma, H. Shimisu, S. Kawamura // IEICE Trans. Fundamentals. – January 2003. – Vol. E86-A, No.1. – P. 37-46.
  11. Олейников, Р. В. Дифференциальные свойства подстановок [Текст]/ Р. В. Олейников, О. И. Олешко, К. Е. Лисицкий, А. Д. Тевяшев // Прикладная радиоэлектроника. - 2010. - Т.9, № 3. - С. 326-333.
  12. Долгов, В. И. Свойства таблиц линейных аппроксимаций случайных подстановок [Текст] / В. И. Долгов, И. В. Лисицкая, О. И. Олешко // Прикладная радиоэлектроника. - Харьков: ХНУРЭ, 2010. – Т. 9, № 3. - С. 334-340.
  13. O’Connor, L. J. On the Distribution of Characteristics in Bijective Mappings [Теxt] / Luke O’Connor; T. Helleseth (ed.) // Advances in Cryptology. EUROCRIPT 93, Lecture Notes in Computer Science. - Springer-Verlag, 1994. - Vol. 795. – P. 360-370.
  14. O’Connor, L. Properties of Linear Approximation Tables [Теxt]/ Luke O’Connor // Fast Software Encryption Lecture Notes in Computer Science. - 1995. - Vol. 1008. - P. 131-136.
  15. Лисицкая, И. В. Свойства законов распределения XOR таблиц и таблиц линейных аппроксимаций случайных подстановок [Текст] / И. В. Лисицкая // Вісник Харківського національного університету імені В. Н. Каразіна. - 2011. - №960, Вип. 16. - С. 196-206.
  16. Daemen, J. Probability distributions of Correlation and Differentials in Block Ciphers [Electronic resource]/ Joan Daemen, Vincent Rijmen. - April 13, 2006. - P. 1-38. - Available at: www/URL: http://eprint.iacr.org/2005/212.pdf.
  17. Lysytska, I. V. (2011). Methodology for assessing resistance block symmetric ciphers. Automatic control systems and automation devices, № 163, 123-133.
  18. Lysytska, I. V. (2012). A comparison of the effectiveness of superblocks some modern ciphers. Radіoelektronіka. Іnformatika. Upravlіnnya, 1 (26), 37-43.
  19. Gorbenko, І. D., Dolgov, V. I., Lysytska, I. V., Olejnikov, R. V. (2010). The new ideology evaluate resistance block symmetric ciphers to differential attacks and linear cryptanalysis. Applied electronics, T. 9, № 3, 212-320.
  20. Lysytska, I. (2012). Methodology for assessing resistance block symmetric kriptopreobrazovany based on reduced models, 284-293.
  21. Baignoires, T., Vaudenay, S. (2004). Proving the Security of AES Substitution-Permutation Network, 16. Available: http://lasecwww.epfl.ch.
  22. Keliher, L. (2007). Toward Provable Security Against Differential and Linear Cryptanalysis for Camellia and Related Ciphers. International Journal of Network Security, Vol.5, No.2, 167–175.
  23. Keliher, L., Meier, H., Tavares, S. (2001). New method for upper bounding the maximum average linear hull probability for SPNs. Advances in Cryptology. EUROCRYPT 2001, LNCS 2045. Springer-Verlag, 420-436.
  24. Keliher, L., Meijer, H., Tavares, S.; In: Vaudenay, S., Youssef, A. M. (2001). Improving the upper bound on the maximum average linear hull probability for Rijndael. Advances in Cryptology, Selected Areas in Cryptography ’01, LNCS 2259. Springer-Verlag, 112-128.
  25. Aleksiychuk, A. N., Kovalchuk, L. V., Skrypnyk, E. V., Shevtsov, A. S. (2008). Evaluate the feasibility of resistance block cipher "Kalina" relative difference methods, linear cryptanalysis, and with respect to algebraic attacks based on homomorphisms. Applied electronics, V.7, № 3, 203-209.
  26. Sano, F., Ohkuma, K., Shimisu, H., Kawamura, S. (2003). On the Security of Nested SPN Cipher against the Differential and Linear Cryptanalysis. IEICE Trans. Fundamentals, E86-A, No. 1, 37-46.
  27. Oleinikov, R. V., Oleshko, O. I., Lisitskiy, K. E., Teviashev, A. D. (2010). Differential properties of substitutions. Applied electronics, Т.9, № 3, 326-333.
  28. Dolgov, V. I., Lysytska, I. V., Oleshko, O. I. (2010). Properties of linear approximation tables of random permutations. Applied electronics, T. 9, № 3, 334-340.
  29. O’Connor, L. J.; In: Helleseth, T. (1994). On the Distribution of Characteristics in Bijective Mappings. Advances in Cryptology. EUROCRIPT 93, Lecture Notes in Computer Science, Vol. 795. Springer-Verlag, 360-370.
  30. O’Connor, L. (1995). Properties of Linear Approximation Tables. Fast Software Encryption Lecture Notes in Computer Science, Vol. 1008, 131-136.
  31. Lysytska, I. V. (2011). Property distribution laws XOR tables and tables of linear approximations of random permutations. News Harkіvskogo natsіonalnogo unіversitetu іmenі V.N. Karazіna, № 960, Vip.16, 196-206.
  32. Daemen, J., Rijmen, V. (2006). Probability distributions of Correlation and Differentials in Block Ciphers, 1-38. Available: http://eprint.iacr.org/2005/212.pdf.

Published

2014-02-06

How to Cite

Лисицкий, К. Е. (2014). Maximum values of total differentials and linear hulls of block symmetric ciphers. Technology Audit and Production Reserves, 1(1(15), 47–52. https://doi.org/10.15587/2312-8372.2014.21230

Issue

Section

Technology audit