An approach of developing a system of solid waste treatment
DOI:
https://doi.org/10.15587/2312-8372.2014.21250Keywords:
solid municipal wastes, algorithm, graph, situation problem, optimal routeAbstract
Nowadays, in Kharkov region, there are problems in the system of treating solid municipal waste. In the paper, it is suggested following the example of foreign countries and implementing a two-stage waste disposal from residential areas by situating a waste transfer station. In this regard, there is a necessity of solving several problems: the problem of locating a station using a graph theory (finding internal or external median); searching an optimal route of waste disposal in a given area (searching Euler’s or Hamiltonian cycle in the graph); selecting the most suitable mark of a waste collection truck out of the available fleet of interchangeable vehicles. Solving these problems would allow reducing fuel consumption, using large-tonnage transport, facilitating a daily work of housing and utilities infrastructure or companies, disposing solid municipal wastes. Furthermore, solving these problems can be united into one software product, which would automate and make calculations for a graph with a large number of state points.References
- Савуляк, В. І. Технічне забезпечення збирання, перевезення та підготовки до переробки твердих побутових відходів [Текст] / В. І. Савуляк. – Вінниця: УНІВЕРСУМ-Вінниця, 2006. – 218 с.
- Кристофидес, Н. Теория графов. Алгоритмический подход [Текст]/ Н. Кристофидес. – М.: Мир, 1978. – 360 с.
- Майника, Э. Алгоритмы оптимизации на сетях и графах [Текст]: пер. с англ. / Э. Майника. – Москва:Мир,1981. – 323 с.
- Берж, К. Теория графов и ее применения. [Текст]: пер. с фр./ К. Берж. – М.: Издательство иностранной литературы, 1962. – 320 с.
- Верников, Б. М. Лекция 4: Эйлеров и гамильтонов цикл [Текст]/ Б. М. Верников, А. М. Шур. – Уральский федеральный институт, каф. алгебры и дискретной математики.
- Belman, R. The Konigsberg bridges problem generalized [Text] / R. Belman, K. L. Cooke // J. of Math. Anal. And Appl. – 1969. – Vol. 25. – P. 1.
- Edmonds, J. The Chinese postman’s problem [Text] / J. Edmonds // Bulletin of the operations Research Soc. Of America. – 1965. – Vol. 13, Supplement 1. – B-73.
- Edmonds, J. Matching, Euler tours and the Chinese postmen’s problem [Text]/ J. Edmonds, E. Jonson // Mathematical Programming. – 1973. – Vol. 5. – P. 88-124.
- Басакер, Р. Конечные графы и сети [Текст]/ Р. Басакер, Т. Саати. – М.: Наука, 1974. – 367 с.
- Yau, S. S. Generation of all Hamiltonian circuits, paths and centres of a graph and related problems [Text] / S. S. Yau // IEEE Trans, CT-14. – 1967. – 74 p.
- Danielson, G. H. On finding the simple paths and circuits in a graph [Text]/ G. H Danielsen // JEEE Trans. CT-15. – 1968. – 294 p.
- Dhawan, V. Hamiltonian circuits and related problems in graph theory [Text] / V. Dhawan // M. Sc. Report, Imperial Colledge. – London, 1969. – P. 1-20.
- Selby, G. R. The use topological methods in computer-aided circuit layout [Text]/ G. R. Selby // D. Thesis. – London University, 1970. – P. 77-78.
- Roberts, S. M. Systematic generation of Hamiltonian circuits [Text] / S. M. Roberts, B. Flores. – 1966. – 690 p.
- Вербицкий, Г. М. Основы оптимального использования машин в строительстве и горном деле : учеб. пособие [Текст] / Г. М. Вербицкий. – Хабаровск : Изд-во Тихоокеан. гос. ун-та, 2006. – 105 с.
- Методические указания по определению стоимости вывоза твердых бытовых отходов [Текст]. – Москва, 2005. – 110 c.
- Городское хозяйство [Текст]/Управление отходами производства и потребления. – 2007. – №4. – С. 70-76.
- Savulyak, V. I. (2006). Technical support for the collection, transportation and preparation for solid waste recycling. Vinnitsa: UNIVERSUM, 218.
- Christofides, N. (1978). Graph theory. Algorithm approach. Мoskow: Peace, 360.
- Minieka, E. (1981). Optimization Algorithms for Networks and Graphs. Moskow: Piece, 323.
- Berzh, К. (1962). Graph theory and its usage. Moskow: Foreign literature publishing house, 320.
- Vernikov, B. M., Shur, A. M. Lecture 4: Euler and Hamiltonian curcuit. Ural feneral institute, Department of Algebra and Discrete Mathematics.
- Belman, R., Cooke, K. L. (1969). The Konigsberg bridges problem generalized. J. of Math. Anal. And Appl., 25, 1.
- Edmonds, J. (1965). The Chinese postman’s problem. Bulletin of the operations Research Soc. Of America, 13, Supplement 1, B-73.
- Edmonds, J., Jonson, E. (1973). Matching, Euler tours and the Chinese postmen’s problem. Mathematical Programming, 5, 88-124.
- Basaker, R., Saati, T. (1974). Finite graphs and networks. Moskow, Science, 367.
- Yau, S. S. (1967). Generation of all Hamiltonian circuits, paths and centres of a graph and related problems. IEEE Trans, CT-14, 74.
- Danielson, G. H. (1968). On finding the simple paths and circuits in a graph. JEEE Trans., CT-15, 294.
- Dhawan, V. (1969). Hamiltonian circuits and related problems in graph theory. M. Sc. Report, Imperial Colledge. London, 1-20.
- Selby, G. R. (1970). The use topological methods in computer-aided circuit layout. D. Thesis. London University, 77-78.
- Roberts, S. M., Flores, B. (1966). Systematic generation of Hamiltonian circuits, 690.
- Verbitskii, G. M. (2006). Foundations of optimal use of machines in the construction and mining. Habarovsk, Pacific ocean state university publishing house, 105.
- Methodological guidelines for determining the value of disposal of solid waste. (2005). Moskow, 110.
- Urban economy. (2007). Waste management and consumption, №4, 70-76.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Надія Миколаївна Журавель, Віктор Олексійович Гужва
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.