Oil storages and main oil pipelines pumps database development

Authors

DOI:

https://doi.org/10.15587/2706-5448.2020.212752

Keywords:

oil pipeline, pumping units, hydraulic characteristic, database, entity-relationship model

Abstract

The object of research is a data model that characterizes the pumping units of main oil pipelines. The paper considers the creation of pumps database and their characteristics as a component of software systems designed to search for sources of energy saving in pipeline transportation of oil and oil products.

An overview of existing programs for calculating the joint operation of an oil pumping station and a pipeline is given. It is shown that most programs are inaccessible for analyzing the applied data storage technologies, or involve manual input of entry data without using databases. Comparative analysis of spreadsheets and relational databases is performed. It is shown that relational databases better meet the requirements of data convenience, availability, scalability, and performance. A physical model of a relational database is presented. The parent and child entities have been established, which make it possible to fully reflect all information about the pumping unit, namely:

– coefficients of hydraulic characteristics depending on the diameter of the impeller rotor;

– characteristics depending only on the pump make;

– classification of the pump by design or purpose. Relationship types and referential integrity rules are defined between entities when deleting or updating data. For data management, the SQLite system is proposed, which provides data manipulation in the SQL query language and does not require the development of additional software. The analysis of possible ways of organizing multilingualism using a database is carried out. The text of the SQL query is proposed, which allows to select the pump with its characteristics by the pump make and impeller diameter. A database structure is proposed that allows storing information about equipment for oil pipelines for various purposes, which makes it possible for automated calculations of complex technological processes. The pumping unit database is an open source project that is posted on the public web service GitHub

Author Biographies

Vitalii Buzovskyi, Odessa National Academy of Food Technologies, 112, Kanatna str., Odessa, Ukraine, 65039

PhD, Assistant

Department of Oil and Gas Technologies, Engineering and Heat Power Engineering

Mykhail Kologrivov, Odessa National Academy of Food Technologies, 112, Kanatna str., Odessa, Ukraine, 65039

PhD, Associate Professor

Department of Oil and Gas Technologies, Engineering and Heat Power Engineering

Alfiia Antonova, Odessa National Academy of Food Technologies, 112, Kanatna str., Odessa, Ukraine, 65039

PhD, Associate Professor

Department of Information Technologies and Cybersecurity

References

  1. Scheme of Ukraine’s Main Oil Pipelines System. Ukrtransnafta. Available at: https://www.ukrtransnafta.com/en/principal-scheme-of-pp-in-ukraine/
  2. Kniazieva, V., Kanyuk, G., Mezerya, A., Andreev, A. (2019). Analysis of normative documents for ensuring efficient work of pumped installations of main oil pipelines. Bulletin of the National Technical University «KhPI» Series: New Solutions in Modern Technologies, 5 (1330), 27–33. doi: http://doi.org/10.20998/2413-4295.2019.05.04
  3. Serediuk, M. D. (2019). Mathematical modeling of the characteristics of oil pumps, taking into account the viscosity of the transported oil. Oil and Gas Power Engineering, 1 (31), 54–64. doi: http://doi.org/10.31471/1993-9868-2019-1(31)-54-64
  4. Serediuk, M. D., Hryhorskyi, S. Ya. (2018). Vyznachennia propusknoi zdatnosti ta enerhovytratnosti dvonytkovykh naftoprovidnykh system. Mizhnarodnyi naukovyi zhurnal Internauka, 1 (3 (43)), 81–87.
  5. Serediuk, M. D., Hanzha, M. Ye. (2017). Vybir enerhoefektyvnykh rezhymiv ekspluatatsii mahistralnykh hazoprovodiv za yikh nepovnoho zavantazhennia. Naukovyi visnyk IFNTUNH, 1 (42), 67–72.
  6. Serediuk, M. D., Hrudz, V. Ya. (2007). Shliakhy pidvyshchennia efektyvnosti ta zmenshennia enerhovytratnosti protsesiv transportuvannia ta zberihannia nafty i hazu. Naftohazova enerhetyka, 2 (3), 24–31. Available at: http://elar.nung.edu.ua/bitstream/123456789/1329/3/1705p.pdf
  7. Kutukov, S. E. (2002). Informatsionno-analiticheskie sistemy magistralnykh truboprovodov. Moscow: SIP RIA, 324.
  8. Kaniuk, G. I., Andreev, A. V., Mezeria, A. Iu., Kniazeva, V. N. (2015). Analiz rezervov energosberezheniia pri upravlenii nasosnymi agregatami nefteperekachivaiuschikh stantsii Ukrainy. Іntegrovanі tekhnologіi ta energozberezhennia, 4, 3–14. Available at: http://repository.kpi.kharkov.ua/bitstream/KhPI-Press/29242/1/ITE_2015_4_Kanyuk_Analiz_rezervov.pdf
  9. Serediuk, M. D., Yakymiv, Y. V., Lisafin, V. P. (2002). Truboprovidnyi transport nafty i naftoproduktiv. Ivano-Frankivsk: Kremenchuk, 517.
  10. McAllister, E. W. (2013). Pipeline rules of thumb handbook: a manual of quick, accurate solutions to everyday pipeline engineering problems. Gulf Professional Publishing, 806.
  11. Bykov, L. I., Mustafin, F. M., Rafikov, S. K., Nechval, A. M., Lavrentev, A. E. (2006). Tipovye raschety pri sooruzhenii i remonte gazonefteprovodov. Saint Petersburg: Nedra, 824.
  12. Tugunov, P. I., Novoselov, V. F., Korshak, A. A., Shammazov, M. A. (2002). Tipovye raschety pri proektirovanii i ekspluatatsii neftebaz i nefteprovodov. Ufa: OOO «DizainPoligrafServis», 658.
  13. Serediuk, M. D., Liuta, N. V. (2004). Tekhnolohichni rozrakhunky rezhymiv roboty nasosnykh stantsii mahistralnykh truboprovodiv. Ivano-Frankivsk : IFNTUNH, 151. Available at: http://194.44.112.13/chytalna/473/index.html
  14. Nechval, A. M. (2005). Osnovnye zadachi pri proektirovanii i ekspluatatsii magistralnykh nefteprovodov. Ufa: Izd-vo UGNTU, 81.
  15. Muratova, V. I. (2014). Otsenka vliianiia protivoturbulentnykh prisadok na gidravlicheskuiu effektivnost nefteproduktoprovodov. Ufa, 162. Available at: http://earthpapers.net/otsenka-vliyaniya-protivoturbulentnyh-prisadok-na-gidravlicheskuyu-effektivnost-nefteproduktoprovodov
  16. Al-Dandal, R. S. (2016). Ratsionalni rezhymy ekspluatatsii mahistralnykh naftoproduktoprovodiv z vykorystanniam protyturbulentnykh prysadok. Ivano-Frankivsk, 141. Available at: http://elar.nung.edu.ua/handle/123456789/6952
  17. Didkovskaia, A. S., Lure, M. V. (2002). Kompiuternii praktikum po truboprovodnomu transportu nefti i nefteproduktov. Moscow: GUP Izd-vo" Neft i gaz" RGU nefti i gaza im. I. M. Gubkina, 128.
  18. Informatsiia o paketakh kompiuternykh programm, razrabotannykh v nauchno-issledovatelskoi laboratorii neftegazovoi gidrodinamiki RGU nefti i gaza im. I. M. Gubkina. Available at: https://www.gubkin.ru/faculty/pipeline_network_design/chairs_and_departments/designing_and_operation_gasoil_pipeline/lurie/lab3.php?special_version=Y
  19. Bakhtizin, R. N., Pirogov, A. N., Nechval, A. M., Pirogov, N. E., Sukharnikov, L. V. (2018). Modelirovanie i algoritmy gidravlicheskogo rascheta statsionarnogo rezhima raboty nefteproduktoprovodnykh sistem. Transport i khranenie nefteproduktov i uglevodorodnogo syria, 3, 27–31. doi: http://doi.org/10.24411/0131-4270-2018-10302
  20. Pump selection program. Available at: http://www.agrovodcom.ru/prog_korvet.php
  21. Linoff, G. S. (Ed.) (2015). Data analysis using SQL and Excel. John Wiley & Sons, 745. doi: http://doi.org/10.1002/9781119183419
  22. Bendre, M., Wattanawaroon, T., Mack, K., Chang, K., Parameswaran, A. (2019). Anti-freeze for large and complex spreadsheets: Asynchronous formula computation. Proceedings of the 2019 International Conference on Management of Data. Amsterdam, 1277–1294. Available at: https://people.eecs.berkeley.edu/~adityagp/papers/dataspread-async.pdf
  23. Bendre, M., Wattanawaroon, T., Rahman, S., Mack, K., Liu, Y., Zhu, S. et. al. (2019). Faster, higher, stronger: Redesigning spreadsheets for scale. 2019 IEEE 35th International Conference on Data Engineering (ICDE), 1972–1975. Available at: https://people.eecs.berkeley.edu/~adityagp/papers/dataspread-demo2.pdf
  24. Malecha, G., Morrisett, G., Shinnar, A., Wisnesky, R. (2010). Toward a verified relational database management system. Proceedings of the 37th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, 237–248. doi: http://doi.org/10.1145/1706299.1706329
  25. Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y., Wilkins, D. (2010). A comparison of a graph database and a relational database: a data provenance perspective. Proceedings of the 48th annual Southeast regional conference, 1–6. Available at: https://john.cs.olemiss.edu/~ychen/publications/conference/vicknair_acmse10.pdf
  26. Kirillov, V. V., Gromov, G. Iu. (2009). Vvedenie v reliatsionnye bazy dannykh. Saint Petersburg: BKHV-Peterburg, 464.
  27. Pumps database – GitHub repository. Available at: https://github.com/Buzovskiy/equipment_database

Published

2020-10-31

How to Cite

Buzovskyi, V., Kologrivov, M., & Antonova, A. (2020). Oil storages and main oil pipelines pumps database development. Technology Audit and Production Reserves, 5(2(55), 4–11. https://doi.org/10.15587/2706-5448.2020.212752

Issue

Section

Information Technologies: Original Research