Ensuring accuracy of cephalography system measurements

Authors

  • Юрій Юрійович Оникієнко National Aviation University, 1, Avenue Kosmonavta Komarova, Kyiv, Ukraine, 03680, Ukraine

DOI:

https://doi.org/10.15587/2312-8372.2014.21696

Keywords:

cephalography, calibration procedure, total distortion, camera model, calibration object

Abstract

The application of existing approaches for calibrating video cameras for a cephalography system is considered and the results of our studies in this field are given. The main objective of the study lies in developing scientific ways of determining the internal and external parameters of video cameras with the ability of adjusting influence of the total distortion on an output image of a cephalography system. The application of modern software applications allows combining different approaches when calibrating cameras. The main steps of conducting calibration procedures and a mathematical tool for finding a camera matrix are considered and defined in the paper. The given steps in the form of methods allow reducing the final error, resulted from the total distortion by combining automatic and manual modes of estimating key points at calibrating. The research results can be used by medical experts, engaged in researching static and dynamic functions of a human-being.

Author Biography

Юрій Юрійович Оникієнко, National Aviation University, 1, Avenue Kosmonavta Komarova, Kyiv, Ukraine, 03680

Assistant

Department of biocybernetics and aerospace medicine

References

  1. Бабияк, В. И. Клиническая вестибулология: Руководство для врачей [Текст] / В. И. Бабияк, А. А. Ланцов, В. Г. Базаров. – Ст-Петербург: Гиппократ. – 1996. – 336 с.
  2. Кузовик, В. Д. Особливості програмного забезпечення експериментальних досліджень біооб’єкту [Текст] / В. Д. Кузовик, В. Г. Гамов, Ю. Ю. Оникиенко // Інженерія програмного забезпечення. – 2010. – №2. – С. 68–75.
  3. Лунев, А. А. Выбор оптимальных параметров калибровки цифровой камеры [Электронный ресурс] / А. А. Лунев. – Режим доступа: www/URL: http://www.info.donntu.edu.ua/el_izdan/geolog/sborniki/ggf111t2.pdf
  4. Tsai, R. Y. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses [Text] / R. Y. Tsai // IEEE Int. Journal Robotics and Automation. – 1987. – Vol. 3(4). – P. 323-344.
  5. Zhang, Z. A flexible new technique for camera calibration [Text] / Z. Zhang // IEEE Trans. on PAMI. – 2000. – Vol. 22(11). – P. 1330-1334.
  6. Triggs, B. Bundle Adjustment – A Modern Synthesis [Text] / B. Triggs, P. McLauchlan, R. Hartley, A. Fitzgibbon // ICCV 99: Proceedings of the International Workshop on Vision Algorithms. Springer-Verlag. – 1999. – P. 298-372.
  7. Malek, S. Calibration Method for an Augmented Reality System [Text] / S. Malek, N. Zenati-Henda, M. Belhocine, S. Benbelkacem // Proceedings of World Academy of Science: Engineering & Technology. – 2008. – Vol. 47. – P. 310-315
  8. Zhang, Z. Determining the epipolar geometry and its uncertainty: A review [Text] / Z. Zhang // International Journal of Computer Vision. – 1998. – Vol. 27(2). – P. 161-195
  9. Heikkila, J. Geometric Camera Calibration Using Circular Control Points [Text] / J. Heikkila // IEEE Transactions on Pattern Analysis and Machine Intelligence. – 2000. – Vol. 22, No. 10. – P. 1066-1077.
  10. Жимбуева, Л. Д. Метод определения суммарной дисторсии цифровых изображений [Электронный ресурс] / Л. Д. Жимбуева. – Режим доступа: www/URL: http://www.computeroptics.smr.ru/KO/PDF/KO35-3/350309.pdf
  11. Babiyak, V. I., Lantsov, A. A., Bazarov, V. G. (1996). Klinicheskaya vestibulologiya: Rukovodstvo dlya vrachey. St-Peterburg: Gippokrat, 336.
  12. Kuzovik, V. D., Gamov, V. G., Onikienko, Y. Y. (2010). Osoblivosti programnogo zabezpechennya eksperimentalnih doslidzhen bioob’ektu. Inzheneriya programnogo zabezpechennya, №2, 68–75.
  13. Lunev, A. A. Vyibor optimalnyih parametrov kalibrovki tsifrovoy kameryi Available: http://www.info.donntu.edu.ua/el_izdan/geolog/sborniki/ggf111t2.pdf
  14. Tsai, R. (1987). A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE Int. Journal Robotics and Automation, Vol. 3(4), 323-344.
  15. Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Trans. on PAMI, Vol. 22(11), 1330-1334
  16. Triggs, B., McLauchlan, Р., Hartley, R., Fitzgibbon, A. (1999). Bundle Adjustment – A Modern Synthesis. ICCV 99: Proceedings of the International Workshop on Vision Algorithms. Springer-Verlag, 298-372.
  17. Malek, S., Zenati-Henda, N., Belhocine, M., Benbelkacem, S. (2008). Calibration Method for an Augmented Reality System. Proceedings of World Academy of Science: Engineering & Technology, Vol. 47, 310-315.
  18. Zhang, Z. (1998). Determining the epipolar geometry and its uncertainty: A review. International Journal of Computer Vision, Vol. 27(2), 161-195.
  19. Heikkila, J. (2000). Geometric Camera Calibration Using Circular Control Points. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 10, 1066-1077.
  20. Zhimbueva, L. D. Metod opredeleniya summarnoy distorsii tsifrovyih izobrazheniy. Available: http://www.computeroptics.smr.ru/KO/PDF/KO35-3/350309.pdf

Published

2014-02-06

How to Cite

Оникієнко, Ю. Ю. (2014). Ensuring accuracy of cephalography system measurements. Technology Audit and Production Reserves, 1(4(15), 23–25. https://doi.org/10.15587/2312-8372.2014.21696

Issue

Section

Metrology, standardization and certification