Justification of dump parameters in conditions of high water saturation of soils

Authors

  • Artem Pavlychenko National Technical University Dnipro Polytechnic 19, D. Yavornitskogo ave., Dnipro, Ukraine, 49005, Ukraine https://orcid.org/0000-0003-4652-9180
  • Andrii Adamchuk National Technical University Dnipro Polytechnic 19, D. Yavornitskogo ave., Dnipro, Ukraine, 49005, Ukraine https://orcid.org/0000-0002-8143-3697
  • Oleksandr Shustov National Technical University Dnipro Polytechnic 19, D. Yavornitskogo ave., Dnipro, Ukraine, 49005, Ukraine https://orcid.org/0000-0002-2738-9891
  • Oleh Anisimov National Technical University Dnipro Polytechnic 19, D. Yavornitskogo ave., Dnipro, Ukraine, 49005, Ukraine

DOI:

https://doi.org/10.15587/2706-5448.2020.218139

Keywords:

dump of soft overburden rocks, possible shift prism, physical and mechanical properties, Rocscience Slide, safety factor.

Abstract

The object of research is the stability parameters of the massif of a single-tier dump of soft overburden rocks with a flooded slope when it is formed by a dragline excavator. One of the most problematic areas is determining the safe distance of the dragline excavator from the upper edge of the slope in the conditions of the formation of a single-tier dump of soft overburden rocks, flooded with water.

The calculation of the width of the prism of possible shift was carried out using the Rocscience Slide software, which, taking into account the parameters of the slope and the physical and mechanical properties of the rock mass, automatically restores a number of curved sliding surfaces for individual safety factors. The obtained data were processed using the Microsoft Excel software, thanks to which, by the least squares method, graphs of the functions of the possible shift prism width from the height of the tier of a dump of soft overburden rocks and the level of its flooding were constructed.

For the conditions of the formation of a single-tier dump of soft rocks of overburden with a height of 40–100 m and a flooding level of 0–30 m, the width of the prism of a possible shift was calculated for sliding surfaces with a safety factor of 1 and 1.2. These values are, respectively, 0–85.9 m and 0–122.6 m within the established calculation limits and depending on the method of constructing curved surfaces. The distance between the points of intersection of the horizontal surface of the tier with curved sliding surfaces with a safety factor of 1 and 1.2 is 16–52.5 m. The dependences of the width of the prism of possible shift (a) on the height of the tier of a dump of soft overburden rocks (Ho) and its level flooding (Hw), taking into account the physical and mechanical properties of the dumped mountain range, including saturated with water. The minimum deviation from the initial value of the coordinates of the points is achieved when setting the second-degree polynomial as the trend line for the function a=f(Hw), and for a=f (Hо) – a straight line.

The obtained data for calculating the parameters of the possible shift prism suggest the possibility of forming a single-tier dump of soft overburden rocks with a height of 40–60 m with unloading of rock mass into the worked-out space and 70–100 m with loading the unstable part of the slope with an EK-11/70 excavator-dragline (Novokramatorsk Machine-Building plant, Ukraine).

Author Biographies

Artem Pavlychenko, National Technical University Dnipro Polytechnic 19, D. Yavornitskogo ave., Dnipro, Ukraine, 49005

Doctor of Technical Sciences, Professor, Head of Department

Department of Ecology and Technologies of Environmental Protection

Andrii Adamchuk, National Technical University Dnipro Polytechnic 19, D. Yavornitskogo ave., Dnipro, Ukraine, 49005

Senior Researcher

Department of Surface Mining

Oleksandr Shustov, National Technical University Dnipro Polytechnic 19, D. Yavornitskogo ave., Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Surface Mining

Oleh Anisimov, National Technical University Dnipro Polytechnic 19, D. Yavornitskogo ave., Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Surface Mining

References

  1. Dryzhenko, A. Yu., Adamchuk, A. A., Tamuia, S. A., Telnov, V. H. (2018). Doslidzhennia parametriv vnutrishnikh vidvaliv u vyroblenomu prostori vidpratsovanykh hlybokykh karieriv. Zbirnyk Naukovykh Prats Natsionalnoho Hirnychoho Universytetu, 53, 56–65. Available at: http://nbuv.gov.ua/UJRN/znpngu_2018_53_8
  2. Drizhenko, A. Iu. (2011). Karernye tekhnologicheskie gornotransportnye sistemy. Dnepropetrovsk: NGU, 542.
  3. Novozhilov, M. G., Khokhriakov, V. S., Pchelkin, G. D., Eskin, V. S.; Novozhilov, M. G. (Ed.) (1971). Tekhnologiia otkrytoi razrabotki mestorozhdenii poleznykh iskopaemykh. Chast 2. Tekhnologiia i kompleksnaia mekhanizatsiia otkrytykh razrabotok. Moscow: Nedra, 552.
  4. Lozhnikov, A. V., Adamchuk, A. A. (2017). Issledovanie vliianiia ispolzovaniia krutonaklonnykh konveierov na effektivnost rekultivatsionnykh rabot pri razrabotke pologikh mestorozhdenii. Zbіrnik Naukovikh Prats Natsіonalnogo Gіrnichogo Unіversitetu, 51, 45–54. Available at: http://nbuv.gov.ua/UJRN/znpngu_2017_51_7
  5. Surhai, M. S., Kulish, V. A. (2007). Perspektyvy vydobutku ta pererobky buroho vuhillia v Ukraini. Donetsk: Vydavnytstvo “Donbas”, 60.
  6. Panas, R., Malanchuk, M. (2010). Tekhnolohiia formuvannia i rekultyvatsii vidvaliv rozkryvnykh porid na terytorii peredkarpatskoho sirkonosnoho baseinu. Suchasni Dosiahnennia Heodezychnoi Nauky ta Vyrobnytstva, 2, 176–182.
  7. Haidin, A. M., Zozulia, I. I. (2011). Novyi Rozdil. Narodzhenyi sirkoiu. Istoriia, liudy, dovkillia. TDV “Instytut HIRKhIMPROM”, 56.
  8. Woźniak, H. (2009). Influence of water content on compressibility of cohesive dump soils – results of studies on samples of modeled lump size distribution. Geologija, 51 (1-2 (65-66)), 53–58. doi: http://doi.org/10.2478/v10056-009-0006-0
  9. Puell Ortiz, J. (2017). Methodology for a dump design optimization in large-scale open pit mines. Cogent Engineering, 4 (1). doi: http://doi.org/10.1080/23311916.2017.1387955
  10. Arsentev, A. I., Bukin, I. Iu., Mironenko, V. A. (1982). Ustoichivost bortov i osushenie karerov. Moscow: Nedra, 165.
  11. Nikolashin, Iu. M. (2010). Otchet NIR: Zakliuchenie po obosnovaniiu uslovii bezopasnogo skladirovaniia vskryshnykh porod v otrabotannii karer GOKa. Otchet o NIR/NOVOTEK, 1/AR-10 (2433), 53.
  12. Kopach, P. I., Krasnopolskii, I. A., Polischuk, S. Z., Shpar, A. G. (1988). Upravlenie sostoianiem massivov na otkrytykh razrabotkakh. Kyiv: Naukova dumka, 248.
  13. Nikolashin, Iu. M., Kebal, Ia. V. (2016). Puti ispolzovaniia ploschadei ostatochnykh otkrytykh gornykh vyrabotok, zatoplennykh podzemnymi vodami. Vіsnik Krivorіzkogo Natsіonalnogo Unіversitetu, 43, 45–47. Available at: http://nbuv.gov.ua/UJRN/Vktu_2016_43_12

Published

2020-12-30

How to Cite

Pavlychenko, A., Adamchuk, A., Shustov, O., & Anisimov, O. (2020). Justification of dump parameters in conditions of high water saturation of soils. Technology Audit and Production Reserves, 6(3(56), 22–26. https://doi.org/10.15587/2706-5448.2020.218139

Issue

Section

Reports on research projects