Investigation of mechanical characteristics of materials based on refractory borides

Authors

DOI:

https://doi.org/10.15587/2706-5448.2020.220320

Keywords:

zirconium diboride, hafnium diboride, hot pressing, ultra-high temperature ceramics, high quasi isostatic pressure.

Abstract

The object of research is the effect of sintering under pressure (10 MPa–4.1 GPa) on the formation of the structure and properties of ZrB2, HfB2, and composites on their bases. It has been found that high pressure consolidation results in an improvement of mechanical characteristics. In particular, the hardness and fracture toughness of the materials sintered under 4.1 GPa pressure are higher than those of the materials obtained under hot pressing conditions at 20–30 MPa and spark-plasma sintering at 50 MPa.

High-pressure sintered HfB2 demonstrated hardness HV(9.8 N)=21.3±0.8 GPa, HV(49 N)=19.3±1.3 GPa, and HV(98 N)=19.2±0.5 GPa and fracture toughness K1C(49 N)=7.2 MPa·m0.5 and K1C(98 N)=5.7 MPa·m0.5. The HfB2 sintered by hot pressing at 1850 °C and 30 MPa demonstrated hardness: HV(9.8 N)=19.0 GPa, HV(49 N)=18.7 GPa, and HV(98 N)=18.1 GPa, K1C(9.8 N)=7.7 MPa·m0.5, K1C(49 N)=6.6 MPa·m0.5 and K1C(98 N)=5.3 MPa·m0.5. High pressure sintered ZrB2 (a=0.3167 nm, c=0.3528 nm, γ=6.2 g/cm3) demonstrated HV(9.8 N)=17.7±0.6 GPa, HV(49 N)=15.4±1.2 GPa, and HV(98 N)=15.3±0.36 GPa and K1C(9.8 N)=4.3 MPa·m0.5, K1C(49 N)=4.2 MPa·m0.5 and K1C(98 N)=4.0 MPa·m0.5. Addition of 20 wt. % of SiC to ZrB2 and sintering under high pressure (4.1 GPa) allowed essential increase of hardness to HV(9.8 N)=24.2±0.7 GPa, HV(49 N)=16.7±0.5 GPa, and HV(98 N)=17.6±0.4 GPa and fracture toughness to K1C(49 N)=7.1 MPa·m0.5, K1C(98 N)=6.2 MPa·m0.5; the material density was γ=5.03 g/cm3. Additions of SiC and Si3N4 to ZrB2 lead to some increase in fracture toughness (up to K1C(98 N)=9.2 MPa·m0.5).

The developed ZrB2- and HfB2-based materials and composites can be used for aerospace applications, in cutting and refractory industries, etc.

Author Biographies

Tetiana Prikhna, V. Bakul Institute for Superhard Materials of the National Academy of Sciences of Ukraine, 2, Avtozavodska str, 2, Kyiv, Ukraine, 04074

Doctor of Technical Science, Professor, Corresponding member of National Academy of Sciences of Ukraine, Head of Department

Department of High-Pressure Technologies, Functional Ceramic Composites and Disperse Superhard Materials

Anastasiia Lokatkina, V. Bakul Institute for Superhard Materials of the National Academy of Sciences of Ukraine, 2, Avtozavodska str, 2, Kyiv, Ukraine, 04074

Postgraduate Student

Department of High-Pressure Technologies, Functional Ceramic Composites and Disperse Superhard Materials

Viktor Moshchil, V. Bakul Institute for Superhard Materials of the National Academy of Sciences of Ukraine, 2, Avtozavodska str, 2, Kyiv, Ukraine, 04074

Senior Researcher

Department of High-Pressure Technologies, Functional Ceramic Composites and Disperse Superhard Materials

Pavlo Barvitskyi, V. Bakul Institute for Superhard Materials of the National Academy of Sciences of Ukraine, 2, Avtozavodska str, 2, Kyiv, Ukraine, 04074

Junior Research

Department of High-Pressure Technologies, Functional Ceramic Composites and Disperse Superhard Materials

Oleksandr Borimsky, V. Bakul Institute for Superhard Materials of the National Academy of Sciences of Ukraine, 2, Avtozavodska str, 2, Kyiv, Ukraine, 04074

Leading Researcher

Department of High-Pressure Technologies, Functional Ceramic Composites and Disperse Superhard Materials

Semyon Ponomaryov, V. E. Lashkaryov Institute of Semiconductor Physics of the National Academy of Sciences of Ukraine, 41, Nauki ave., Kyiv, Ukraine, 03028

Junior Researcher

Department of Optics and Spectroscopy for Electrical and Electrical Materials

Richard Haber, Rutgers, The State University of New Jersey, 607, Taylor Road Piscataway, New Brunswick, USA, NJ 08854-8065

Professor, Co-Director

Ceramic, Composite and Optical Materials Center

Department of Materials Science and Engineering

Tatiana Talako, State Scientific Institution «Powder Metallurgy Institute», 41, Platonova str., Minsk, Belarus, 220005

Leading Researcher

References

  1. Mishima, O., Era, K.; Kumashiro, Y. (Ed.) (2000). Electric Refractory Materials. New York: Marcel Dekker, Basel, 495–549.
  2. Prikhna, Т., Haber, R., Barvitskiy, P., Sverdun, V., Dub, S., Muratov, V. et. al. (2017). Synthesis, sintering, structure and properties of AlB12C2–based materials. Proceedings of the 41st International conference and exposition on advanced ceramics and composites. Daytona Beach. doi: http://doi.org/10.1002/9781119474678.ch19
  3. Prikhna, T. A., Barvitskyi, P. P., Maznaya, A. V., Muratov, V. B., Devin, L. N., Neshpor, A. V. et. al. (2019). Lightweight ceramics based on aluminum dodecaboride, boron carbide and self-bonded silicon carbide. Ceramics International, 45 (7), 9580–9588. doi: http://doi.org/10.1016/j.ceramint.2018.10.065
  4. Rudy, E. (1969). Ternary phase equilibria in transition metal--boron--carbon--silicon systems. Part v. Compendium of phase diagram data.
  5. Portnoi, K. I., Romashov, V. M., Salibekov, S. E. (1971). Constitution diagram of the system tantalum-boron. Soviet Powder Metallurgy and Metal Ceramics, 10 (11), 925–927. doi: http://doi.org/10.1007/bf00794010
  6. Glaser, F. W., Post, B. (1953). System Zirconium-Boron. JOM, 5 (9), 1117–1118. doi: http://doi.org/10.1007/bf03397597
  7. Rogl, P., Potter, P. E. (1988). A critical review and thermodynamic calculation of the binary system: Zirconium-boron. Calphad, 12 (2), 191–204. doi: http://doi.org/10.1016/0364-5916(88)90021-1
  8. Wuchina, E., Opila, E., Opeka, M., Fahrenholtz, B., Talmy, I. (2007). UHTCs: Ultra-High Temperature Ceramic Materials for Extreme Environment Applications. The Electrochemical Society Interface, 16 (4), 30–36. doi: http://doi.org/10.1149/2.f04074if
  9. Musa, C., Licheri, R., Orrù, R., Marocco, R., Cao, G. (2019). Fabrication and Characterization of SiC fiber reinforced HfB2 Ceramics for Space Propulsion Components. Ceramics in Modern Technologies, 1 (1), 51–58. doi: http://doi.org/10.29272/cmt.2018.0010
  10. Rodriguez-Carvajal, J. (1990). FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis. Abstract of the satellite meeting on powder diffraction of the XV congress. Int. Union of Crystallography. Talence.
  11. Zapata-Solvas, E., Jayaseelan, D. D., Lin, H. T., Brown, P., Lee, W. E. (2013). Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering. Journal of the European Ceramic Society, 33 (7), 1373–1386. doi: http://doi.org/10.1016/j.jeurceramsoc.2012.12.009

Downloads

Published

2020-12-30

How to Cite

Prikhna, T., Lokatkina, A., Moshchil, V., Barvitskyi, P., Borimsky, O., Ponomaryov, S., Haber, R., & Talako, T. (2020). Investigation of mechanical characteristics of materials based on refractory borides. Technology Audit and Production Reserves, 6(1(56), 40–44. https://doi.org/10.15587/2706-5448.2020.220320

Issue

Section

Reports on research projects