Influence of heating to high temperatures on mechanical properties of boride-based refractory materials
DOI:
https://doi.org/10.15587/2706-5448.2021.228943Keywords:
zirconium diboride, hafnium diboride, silicon carbide, silicon nitride, ultrahigh-temperature ceramics, refractory boridesAbstract
The object of research is HfB2, ZrB2 and ceramics composition HfB2-30 % SiC and ZrB2-20 % SiC, ZrB2-20 % SiC-4 % Si3N4 obtained under high pressure, their mechanical characteristics before and after heating to high temperatures and temperatures of beginning of melting. The research was conducted in order to create new effective refractory materials for use in the aerospace industry. Therefore, the melting temperatures of sintered materials and the effect of heating on their mechanical properties were also studied. Additives (ZrB2-20 % SiC and HfB2-30 % SiC) although led to a decrease in specific gravity. But increased hardness (by 17 % and 46 % in the case of ZrB2 and HfB2, respectively) and fracture toughness (by 40 % and 21 % in the case of ZrB2 and HfB2, respectively). However, significantly reduced the onset of melting temperature in vacuum to 2150–2160 °C.
Materials sintered from ZrB2 and HfB2 was not melted after heating to 2970 °C. After heating to a melting point of 2150–2160 °C (in the case of materials with additives) and to temperatures of 2970 °C (in the case of materials sintered with ZrB2 or HfB2), the hardness and fracture toughness decreased. Thus, the hardness of the material prepared from ZrB2 decreased by 19 % and its fracture toughness – by 18 %, and of that prepared from ZrB2–20 % SiC – by 46 % and 32 %, respectively. The hardness of the material prepared from HfB2 decreased by 46 %, its fracture toughness – by 55 %, and of that prepared from HfB2-30 % SiC, after heating decreased by 40 %, but its fracture toughness increased by 15 %. The sintered HfB2 (with a density of 10.4 g/cm3) before heating showed a hardness of HV(9.8 N)=21.27±0.84 GPa, HV(49 N)=19.29±1.34 and HV(98 N)=19.17±0.5, and fracture toughness K1C(9.8 N)=0.47 MH·m0.5, and ZrB2 with a density of 6.2 g/cm3 was characterized by HV(9.8 N)=17.66±0.60 GPa, HV(49 N)=15.25±1.22 GPa and HV(98 N)=15.32±0.36 GPa, K1C(9.8 N)=4.3 MH·m0.5. Material sintered with HfB2-30 % SiC (density 6.21 g/cm3) had Hv(9.8 N)=38.1±1.4 GPa, HV(49 N)=27.7±2.8 GPa, and K1C(9.8 N)=8.1 MH·m0.5, K1C(49 H)=6.8 MH·m0.5. The sintered with ZrB2-20 % SiC material had density of 5.04 g/cm3, HV(9.8 N)=24.2±1.9 GPa, HV(49 N)=16.7±2.8 GPa, K1C(49 H)=7.1 MH·m0.5. The SiC addition to the initial mixture significantly reduces the elasticity of the materials.
References
- Upadhya, K., Yang, J. M., Hoffmann, W. P. (1997). Materials for ultra high temperature structural applications. American Ceramic Society Bulletin, 76, 51–56.
- Sichkar, S. M., Antonov, V. N., Antropov, V. P. (2013). Comparative study of the electronic structure, phonon spectra, and electron-phonon interaction of ZrB2and TiB2. Physical Review B, 87 (6). doi: http://doi.org/10.1103/physrevb.87.064305
- Zhang, G.-J., Guo, W.-M., Ni, D.-W., Kan, Y.-M. (2009). Ultrahigh temperature ceramics (UHTCs) based on ZrB2and HfB2systems: Powder synthesis, densification and mechanical properties. Journal of Physics: Conference Series, 176, 012041. doi: http://doi.org/10.1088/1742-6596/176/1/012041
- Guo, S.-Q. (2009). Densification of ZrB2-based composites and their mechanical and physical properties: A review. Journal of the European Ceramic Society, 29 (6), 995–1011. doi: http://doi.org/10.1016/j.jeurceramsoc.2008.11.008
- Squire, T. H., Marschall, J. (2010). Material property requirements for analysis and design of UHTC components in hypersonic applications. Journal of the European Ceramic Society, 30 (11), 2239–2251. doi: http://doi.org/10.1016/j.jeurceramsoc.2010.01.026
- McCusker, L. B., Von Dreele, R. B., Cox, D. E., Louër, D., Scardi, P. (1999). Rietveld refinement guidelines. Journal of Applied Crystallography, 32 (1), 36–50. doi: http://doi.org/10.1107/s0021889898009856
- Glagovskii, B. A., Roitshtein, G. Sh., Iashin, V. A. (1980). Kontrolno-izmeritelnie pribori i osnovi avtomatizatsii proizvodstva abrazivnikh instrumentov. Leningrad: Mashinostroenie, 278.
- Baranov, V. M. (1972). Opredelenie konstant uprugosti obraztsov materialov, imeiuschikh formu diska. Zavodskaia laboratoriia, 9, 1120–1124.
- Pirani, M., Alterthum, H. (1923). On a method for determining the melting point of refractory metals. Z. Elektrochem., 29 (1–2), 5–8.
- Bondar, A. A., Maslyuk, V. A., Velikanova, T. Y., Grytsiv, A. V. (1997). Phase equilibria in the Cr-Ni-C system and their use for developing physicochemical principles for design of hard alloys based on chromium carbide. Powder Metallurgy and Metal Ceramics, 36 (5-6), 242–252. doi: http://doi.org/10.1007/bf02676213
- Velikanova, T. Y., Bondar, A. A., Grytsiv, A. V. (1999). The chromium-nickel-carbon (Cr-Ni-C) phase diagram. Journal of Phase Equilibria, 20 (2), 125–147. doi: http://doi.org/10.1007/s11669-999-0011-3
- Zapata-Solvas, E., Jayaseelan, D. D., Lin, H. T., Brown, P., Lee, W. E. (2013). Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering. Journal of the European Ceramic Society, 33 (7), 1373–1386. doi: http://doi.org/10.1016/j.jeurceramsoc.2012.12.009
- Prikhna, T., Lokatkina, A., Moshchil, V., Barvitskyi, P., Borimsky, O., Ponomaryov, S. et. al. (2020). Investigation of mechanical characteristics of materials based on refractory borides. Technology Audit and Production Reserves, 6 (1 (56)), 40–44. doi: http://doi.org/10.15587/2706-5448.2020.220320
- Rudy, E. (1969). Ternary phase equilibria in transition metal-boron-carbon systems: part V, compendium of phase diagram data. Technical Report AFML-TR-65-2. Wright Patterson Air Force Base (OH): Air Force Materials Laboratory.
- Portnoi, K. I., Romashov, V. M., Salibekov, S. E. (1971). Constitution diagram of the system tantalum-boron. Soviet Powder Metallurgy and Metal Ceramics, 10 (11), 925–927. doi: http://doi.org/10.1007/bf00794010
- Glasser, F. W., Post, B. (1953). Phase diagram zirconium-boron. Trans Metallurgical Soc AIME, 197, 1117–1118.
- Rogl, P., Potter, P. E. (1988). A critical review and thermodynamic calculation of the binary system: Zirconium-boron. Calphad, 12 (2), 191–204. doi: http://doi.org/10.1016/0364-5916(88)90021-1
- Neschpor, V. S., Samsonov, G. V. (1957). The brittleness of metallike compound. Fiz.:Metal. i Metalloved., 4, 181.
- Wiley, D. E., Manning, W. R., Hunter, O. (1969). Elastic properties of polycrystalline TiB2, ZrB2 and HfB2 from room temperature to 1300 °K. Journal of the Less Common Metals, 18 (2), 149–157. doi: http://doi.org/10.1016/0022-5088(69)90134-9
- Zhu, S., Fahrenholtz, W. G., Hilmas, G. E. (2007). Influence of silicon carbide particle size on the microstructure and mechanical properties of zirconium diboride–silicon carbide ceramics. Journal of the European Ceramic Society, 27 (4), 2077–2083. doi: http://doi.org/10.1016/j.jeurceramsoc.2006.07.003
- Mallik, M., Ray, K., Mitra, R. (2017). Effect of Si3N4 Addition on Oxidation Resistance of ZrB2-SiC Composites. Coatings, 7 (7), 92. doi: http://doi.org/10.3390/coatings7070092
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Анастасія Станіславівна Локаткіна, Тетяна Олексіївна Пріхна, Віктор Євгенович Мощіль, Павло Петрович Барвіцький, Олександр Іванович Боримський, Леонід Миколайович Девін, Семен Семенович Пономарьов, Richard Haber, Тетяна Леонідівна Талако, Анатолій Адольфович Бондар
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.