Design of a refrigerated complex for short-term storage of tropical fruits with a solar energy plant
DOI:
https://doi.org/10.15587/2706-5448.2021.235594Keywords:
Abstract
The object of research is a refrigerated complex for short-term storage of tropical fruits in conditions of significant seasonal and daily fluctuations in ambient temperature, that typical for regions with a tropical climate. One of the problems is that the complexes are autonomous small firms for the year-round processing and storage of tropical fruits, located far from the central electric networks. In the presence of solar radiation, the complexes receive energy from small solar power plants. Such complexes are called «trigeneration system». In the course of the study, data on modes were used low temperature heat treatment and preservation of various tropical fruits, ripening times and climatic conditions of Tunisia. It has been established that citrus fruits are stored in chambers with high temperature, olives are frozen and stored for a short time before processing. The total amount of heat entering the citrus chambers is determined by changes in the ambient temperature. The thermal load of the olives chamber is determined by the heat treatment time. It was found that the cargo capacity of chambers with different temperatures differs six times. The thermal load of the olive storage chambers is only four times less. This is due to the peculiarities of the building structure of the complex, technological processes of cooling and freezing. Based on the thermal calculation, the cooling of the chambers is provided by a two-stage booster refrigeration machine with CO2 refrigerant in a transcritical cycle. To ensure the operation of the complex, a solar photoelectric converter is designed. This ensures the environmental safety of the complex and the possibility of obtaining energy savings by regulating the thermal power of the compressors with frequency converters, depending on the ambient temperature. The designed complex can be offered to a private investor for practical implementation.
References
- Mirovaya prodovolstvennaya problema. Available at: https://vuzlit.ru/1211757/mirovaya_prodovolstvennaya_problema
- Yasin, E. (2010). Prodovolstvennaya programma v mire i v Rossii: perspektivy i reshenie. Available at: https://liberal.ru/scientific-seminar/bprodovolstvennaya-programma-v-mire-i-v-rossiiperspektivy-i-reshenieb
- Bashurova, D. (2009). Problemy goloda v mire. Available at: http://diplomba.ru/work/122393
- Aste, N., Del Pero, C., Leonforte, F. (2017). Active refrigeration technologies for food preservation in humanitarian context – A review. Sustainable Energy Technologies and Assessments, 22, 150–160. doi: http://doi.org/10.1016/j.seta.2017.02.014
- Medved, D. (2011). Trigeneration units. Intensive Programme “Renewable Energy Sources”, 47–50. Available at: http://home.zcu.cz/~tesarova/IP/Proceedings/Proc_2011/Files/Medved.pdf
- Bassols, J., Kuckelkorn, B., Langreck, J., Schneider, R., Veelken, H. (2002). Trigeneration in the food industry. Applied Thermal Engineering, 22 (6), 595–602. doi: http://doi.org/10.1016/s1359-4311(01)00111-9
- Energetika Tunisa. Available at: https://knoema.ru/atlas/%D0%A2%D1%83%D0%BD%D0%B8%D1%81/topics/%D0%AD%D0%BD%D0%B5%D1%80%D0%B3%D0%B5%D1%82%D0%B8%D0%BA%D0%B0
- Tassou, S. A., Lewis, J. S., Ge, Y. T., Hadawey, A., Chaer, I. (2010). A review of emerging technologies for food refrigeration applications. Applied Thermal Engineering, 30 (4), 263–276. doi: http://doi.org/10.1016/j.applthermaleng.2009.09.001
- Tunis ‒ strana ‒ proizvoditel tropicheskoy selkhozproduktsii. Available at: https://ru.wikipedia.org/wiki/Тунис
- Sezony fruktov v Tunise. Available at: https://summerhotels.ru/tunisia/stati-o-tunise/sezony-fruktov-v-tunise/
- Metody khraneniya olivok (2017). Available at: https://oliva.su/blog/perspektivnye-metody-hraneniya-olivok
- Kim, Y. M., Kim, C. G., Favrat, D. (2012). Transcritical or supercritical CO2 cycles using both low- and high-temperature heat sources. Energy, 43 (1), 402–415. doi: http://doi.org/10.1016/j.energy.2012.03.076
- Yavnel, B. K. (1989). Kursovoe i diplomnoe proektirovanie kholodilnykh ustanovok i sistem konditsionirovaniya vozdukha. Moscow: Agropromizdat, 233.
- Chumak, I. G. et. al. (1981). Kholodilnye ustanovki. Moscow: Legkaya i pischevaya promyshlennost, 344.
- Morozyuk, T. V. (2006). Teoriya kholodilnykh mashin i teplovykh nasosov. Odessa: Studiya «Negotsiant», 712.
- Solnechnaya energiya. Available at: https://akbinfo.ru/alternativa/solnechnaja-jenergija.html
- Raschet solnechnoy elektrostantsii. Available at: https://avtonomny-dom.ru/solnechnyie-batarei/raschet-solnechnoyelektrostantsii.html
- Kilkist elektropryladiv seredni statystychni dani (2018). Available at: https://eenergy.com.ua/korysni-porady/rozrahunok-spozhyvannya-elektroenergiyi/
- Soniachni paneli. Internet-mahazyn soniachnykh panelei. Available at: https://teplota.ua/shop/solnechnaya-batareya-jinko-solar-310-vt-24-v,-polikristallicheskaya-jkm310p-304494p.html
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Larisa Morozyuk, Viktoriia Sokolovska-Yefymenko, Yaroslav Petushkov, Maksym Sharaiev, Sergii Psarov
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.