Research of hydrodynamics of gas flow filtration through a stationary layer of crushed cotton stalks (wild cotton)

Authors

DOI:

https://doi.org/10.15587/2706-5448.2021.240250

Keywords:

cotton stalks, particle size distribution, porosity, pressure loss, stationary layer, fibrous particles

Abstract

The object of this research is the hydrodynamics of the stationary layer of crushed cotton stalks. One of the most problematic areas is the influence of the physical and mechanical characteristics of the stationary layer of crushed cotton stalks on the hydrodynamics of filtration drying.

In the course of research, methods of physical and mathematical modeling are used. Sieve analysis is used to determine the granulometric composition of the polydisperse mixture of crushed cotton stalks.

The granulometric composition of the crushed stalks of cotton is determined and the graphical dependence of the percentage of each fraction is presented. The hydrodynamics of gas flow filtration through a stationary layer of crushed cotton stalks are experimentally investigated, and a graphical dependence of pressure losses on the fictitious rate of gas flow filtration is presented. It is found that pressure losses in the stationary layer of crushed cotton stalks are parabolic, which indicates the influence of both inertial and viscous components on pressure losses. The unknown coefficients of the modified Ergun equation are determined on the basis of experimental data. The correlation dependence between the experimental and theoretically calculated values is presented and it is shown that the maximum relative error is 9.6 %, which is quite acceptable for practical calculations. The results of experimental studies are also presented in the form of a graphical dependence of the Euler number on the Reynolds number. Based on the generalization of the experimental data, the calculated dependences are obtained in the form of dimensionless complexes, which describe the hydrodynamics of the gas flow filtration through a stationary layer of crushed cotton stalks. This makes it possible to predict the energy costs for creating a differential pressure, with an accuracy sufficient for practical calculations. The ratio of the experimental values of pressure losses to the theoretically calculated ones, depending on the Reynolds number, is graphically presented. It is shown that the maximum relative error does not exceed 8 %. The proposed generalizations of experimental data will make it possible to determine the energy consumption for creating a pressure drop at the design stage of the drying equipment, as well as to calculate the optimal process parameters and predict its economic feasibility.

Author Biographies

Zagira Kobeyeva, M. Auezov South Kazakhstan University

PhD

Alisher Khussanov, M. Auezov South Kazakhstan University

PhD, Associate Professor

Department of Technological Machines and equipment

Volodymyr Atamanyuk, Lviv Polytechnic National University

Doctor of Technical Sciences, Professor

Department of Chemical Engineering

Zoriana Hnativ, Lviv Polytechnic National University

PhD, Associate Professor

Department of Chemical Engineering

Botagoz Kaldybayeva, M. Auezov South Kazakhstan University

PhD, Associate Professor

Department of Standardization and Certification

Dauren Janabayev, M. Auezov South Kazakhstan University

PhD

References

  1. Ob utverzhdenii Gosudarstvennoi programmy razvitiia agropromyshlennogo kompleksa Respubliki Kazakhstan na 2017 – 2021 gody (2018). Postanovlenie Pravitelstva Respubliki Kazakhstan No. 423. 12.07.2018. Available at: https://adilet.zan.kz/rus/docs/P1800000423
  2. Kobuliev, Z. V. (2006). Beton s zapolnitelem iz droblennykh steblei khlopchatnika. Zhilischnoe Stroitelstvo, 8, 30–31.
  3. Beregovoi, V. A., Beregovoi, A. M. (2012). Penoarbolity na osnove otkhodov derevoobrabatyvaiuschikh i selskokhoziaistvennykh proizvodstv v stroitelstve. Penza: PGUAS, 136.
  4. Dzhumaev, D. S. (2012). Arbolit na osnove steblei khlopchatnika i tekhnologicheskie osobennosti ego izgotovleniia. Vestnik KGUSTA, 3 (37), 10–15.
  5. Negmatov, S. S., Holmurodova, D. K., Abed, N. S., Negmatova, K. S., Boydadaev, M. B., Tulyaganova, V. S. (2020). Development of effective compositions of composite wood-plastic board materials based on local raw materials and industrial waste. Plasticheskie Massy, 1 (11-12), 28–32. doi: http://doi.org/10.35164/0554-2901-2020-11-12-28-32
  6. Negmatov, S. S., KHolmurodova, D. K., Abed, Sh. Zh., Buriev, N. I., Askarov, K. A., Saidov, M. M. i dr. (2010). Tekhnologiia polucheniia napolnitelei iz steblei khlopchatnika dlia proizvodstva kompozitsionnykh drevesno-plastikovykh materialov. Tashkent: GUP «Fan va tarakkiet».
  7. Serbina, T. V. (1993). Razrabotka tekhnologii aktivnykh uglei iz guza-pai (otkhoda khlopchatnika). Moscow, 223.
  8. Kedelbaev, B. Sh., Esimova, A. M., Narymbaeva, Z. K., Abildaeva, R. A., Kudasova, D. E. (2015). Issledovanie protsessa polucheniia polisakharidov iz guza-pai. Mezhdunarodnii zhurnal eksperimentalnogo obrazovaniia, 10, 27–28.
  9. Sushkova, V. I., Vorobeva, G. I. (2007). Bezotkhodnaia konversiia rastitelnogo syria v biologicheski aktivnye veschestva. Kirov, 204.
  10. Sikkema, R., Steiner, M., Junginger, M., Hiegl, W., Hansen, M. T., Faaij, A. (2011). The European wood pellet markets: current status and prospects for 2020. Biofuels, Bioproducts and Biorefining, 5 (3), 250–278. doi: http://doi.org/10.1002/bbb.277
  11. Stolarski, M. J., Szczukowski, S., Tworkowski, J., Krzyżaniak, M., Gulczyński, P., Mleczek, M. (2013). Comparison of quality and production cost of briquettes made from agricultural and forest origin biomass. Renewable Energy, 57, 20–26. doi: http://doi.org/10.1016/j.renene.2013.01.005
  12. Atamaniuk, V. M., Humnytskyi, Ya. M. (2013). Naukovi osnovy filtratsiinoho sushinnia dyspersnykh materialiv. Lviv: Vydavnytstvo Natsionalnoho universytetu “Lvivska politekhnika”, 276.
  13. Rudobashta, S. P., Dmitriev, V. M. (2005). Rol gidrodinamiki potokov v nepreryvno deistvuiuschikh sushilkakh s dispersnoi tverdoi fazoi. Sovremennye energozberegaiuschie teplovye tekhnologii (sushka i teplovye protsessy). Moscow, 1, 51–58.
  14. Aerov, M. E., Todes, O. M., Narinskii, D. A. (1979). Apparaty so statsionarnym zernistym sloem. Leningrad: Khimiia, 176.
  15. Atamaniuk, V. M., Khanyk, IA. N. (2002). Gidrodinamika filtratsionnoi sushki zernistykh materialov. Sovremennye energosberegaiuschie teplovye tekhnologii. Moscow: Izd-vo "Merkuri", 4, 148–152.
  16. Khanyk, Ya. M., Yaser, A.-A. (1996). Hidrodynamika filtratsiinoho protsesu sushinnia pisku. Khimichna Promyslovist Ukrainy, 6, 33–37.
  17. Huzova, I. O., Khanyk, Ya. M. (2000). Hidrodynamika filtratsiinoho sushinnia dyspersnykh materialiv. Visnyk NU “Lvivska Politekhnika”. Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 414, 168–171.
  18. Atamaniuk, V. M. (2006). Hidrodynamika filtratsiinoho sushinnia dyspersnoho materialu. Vseukrainskyi Nauk.-Tekhn. Zhurnal. Promyslova Hidravlika i Pnevmatyka, 1 (11), 12–17.
  19. Atamaniuk, V. M., Khanik, Ia. N. (2005). Gidrodinamika i kinetika filtratsionnoi sushki dispersnykh materialov. Sovremennye Energosberegaiuschie Teplovye Tekhnologii, 208–211.
  20. Gelperin, N. I. (1981). Osnovnye protsessy i apparaty khimicheskoi tekhnologii. Moscow: Khimiia, 384.

Downloads

Published

2021-10-08

How to Cite

Kobeyeva, Z., Khussanov, A., Atamanyuk, V., Hnativ, Z., Kaldybayeva, B., & Janabayev, D. (2021). Research of hydrodynamics of gas flow filtration through a stationary layer of crushed cotton stalks (wild cotton). Technology Audit and Production Reserves, 5(1(61), 46–51. https://doi.org/10.15587/2706-5448.2021.240250

Issue

Section

Alternative and Renewable Energy Sources: Reports on Research Projects