Study of the effects of ultra-low intensity electromagnetic fields on biological objects

Authors

DOI:

https://doi.org/10.15587/2706-5448.2021.244643

Keywords:

information-wave technology, ultra-low intensity electromagnetic radiation, non-thermal effect, coaxial antenna, pulsed gas discharge

Abstract

The object of research is the efficiency of exposure to electromagnetic field (EMF) of ultra-low intensity on biological objects, which is formed by a generator of broadband radiation. The principle of action of the generator is based on formation of electromagnetic radiation induced by periodic pulsed gas discharge in coaxial system of electrodes, which is loaded on a dielectric rod antenna. The method of selection of signals and corresponding equipment, which energy characteristics of radiation correspond to the criterion of non-thermal influence on bioobjects, is developed for obtaining a comparative assessment of influence bioefficiency. The proposed new method for processing experimental data using statistical calculations that meet the requirements for the processing and interpretation of the results. The seeds of wheat and interaction of millimeter range electromagnetic oscillations with bone marrow cells of rats were used as biological objects for investigating the effect of millimeter range electromagnetic oscillations. A biosensory effect was obtained when exposed to broadband radiation of ultra-low intensity, compared to the control sample. A change in the properties of the seeds, in particular, heat resistance, is observed. According to the experimental data, seeds turn out to be less susceptible to heat as a result of their pretreatment with EMF. The biological response is observed to depend on the frequency and time of irradiation. Also, the dependence of the decrease in the number of dead cells on the time of EMF irradiation was experimentally proved. The equation of dependence of selective average proportion of dead cells in rat bone marrow on irradiation time was calculated. Biosensory effect of exposure to broadband ultra-low intensity EMF of the developed emitter was revealed. It was established and statistically proved that the minimum time with the maximum positive effect of exposure to electromagnetic radiation of millimeter range on bone marrow cells of rats is 30 minutes, compared with an unirradiated sample. The results make it possible to evaluate the positive effect of electromagnetic oscillations on biological objects and propose the results of studies for practical use in the development of medical systems.

Author Biographies

Yuliia Voloshyn, National Aerospace University «Kharkiv Aviation Institute»

Postgraduate Student

Department of Radioelectronic and Biomedical Computerized Means and Technologies

Sergey Kulish, National Aerospace University «Kharkiv Aviation Institute»

PhD, Professor

Department of Radioelectronic and Biomedical Computerized Means and Technologies

Volodymyr Oliinyk, National Aerospace University «Kharkiv Aviation Institute»

PhD, Professor

Department of Radioelectronic and Biomedical Computerized Means and Technologies

Andrei Frolov, Kharkiv National University of Radio Electronics

PhD, Associate Professor

Department of Computer-Integrated Technologies, Automation and Mechatronics

References

  1. Kulish, S. M., Oliinyk, V. P., Voloshyn, Yu. A. (2018). Radiofizychni osnovy informatsiino-khvylovykh tekhnolohii u biomedinzhenerii. Kharkiv: Nats. aerokosm. un-t im. M. Ye. Zhukovskoho «Kharkiv. aviats. in-t», 68.
  2. Extremely Low Frequency Fields (2007). Environmental Health Criteria Monograph No. 238. World Health Organization. Available at: http://www.who.int/peh-emf/publications/Complet_DEC_2007.pdf
  3. Kaszuba-Zwoińska, J., Gremba, J., Gałdzińska-Calik, B., Wójcik-Piotrowicz, K., Thor, P. J. (2015). Electromagnetic field induced biological effects in humans. Przegl Lek, 72, 636–641.
  4. Markov, M. (2015). XXIst century magnetotherapy. Electromagnetic Biology and Medicine, 34 (3), 190–196. doi: http://doi.org/10.3109/15368378.2015.1077338
  5. Pilla, A. A. (2013). Nonthermal electromagnetic fields: From first messenger to therapeutic applications. Electromagnetic Biology and Medicine, 32 (2), 123–136. doi: http://doi.org/10.3109/15368378.2013.776335
  6. Jelenković, A., Janać, B., Pešić, V., Jovanović, D. M., Vasiljević, I., Prolić, Z. (2006). Effects of extremely low-frequency magnetic field in the brain of rats. Brain Research Bulletin, 68 (5), 355–360. doi: http://doi.org/10.1016/j.brainresbull.2005.09.011
  7. Torres-Duran, P. V., Ferreira-Hermosillo, A., Juarez-Oropeza, M. A., Elias-Viñas, D., Verdugo-Diaz, L. (2007). Effects of whole body exposure to extremely low frequency electromagnetic fields (ELF-EMF) on serum and liver lipid levels, in the rat. Lipids in Health and Disease, 6 (1). doi: http://doi.org/10.1186/1476-511x-6-31
  8. Devyatkov, N. D., Golant, M. B., Betskii, O. M. (1991). Millimetrovye volny i ikh rol v protsessakh zhiznedeyatelnosti. Moscow: Radio i svyaz, 168.
  9. Betskii, O. V., Lebedeva, N. N. (2001). Sovremennye predstavleniya o mekhanizmakh vozdeistviya nizkointensivnykh elektromagnitnykh voln na biologicheskie obekty. Millimetrovye volny v biologii i meditsine, 3 (33), 5–19.
  10. Kaznacheev, V. P., Mikhailova, L. P. (1985). Bioinformatsionnaya funktsiya estestvennykh elektromagnitnykh polei. Novosibirsk: Nauka, 170.
  11. Sitko, S. P., Skripnik, Yu. A., Yanenko, Yu. A.; Sitko, S. P. (Ed.) (1999). Apparatnoe obespechenie sovremennykh tekhnologii kvantovoi meditsiny. Kyiv: FADA, LTD, 199.
  12. Kolbun, N. D., Lobarev, V. E. (1988). Problema bioinformatsionnykh vzaimodeistvii: millimetrovyi diapazon dlin voln. Kibernetika i vychislitelnaya tekhnika. Kyiv, 78, 94–99.
  13. Smolyanskaya, A. Z., Vilenskaya, R. L. (1973). Deistvie elektromagnitnogo izlucheniya millimetrovogo diapazona na funktsionalnuyu aktivnost nekotorykh geneticheskikh elementov bakterialnykh kletok. UFN, 110 (3), 458–460.
  14. Kolbun, N. D., Lobarev, V. E. (1988). Problema bioinformatsionnykh vzaimodeistvii: millimetrovyi diapazon voln. Kibernetika i vychislitelnaya tekhnika, 78, 94–99.
  15. Fröhlich, H. (1980). The Biological Effects of Microwaves and Related Questions. Advances in Electronics and Electron Physics, 53, 85–152. doi: http://doi.org/10.1016/s0065-2539(08)60259-0
  16. Tsong, T. Y., Liu, D.-S., Chauvin, F., Gaigalas, A., Astumian, R. D. (1989). Electroconformational coupling (ECC): An electric field induced enzyme oscillation for cellular energy and signal transductions. Bioelectrochemistry and Bioenergetics, 21 (3), 319–331. doi: http://doi.org/10.1016/0302-4598(89)85010-x
  17. Brayman, A. A., Megumi, T., Miller, M. W. (1990). Proportionality of ELF electric field-induced growth inhibition to induced membrane potential inZea mays andVicia faba roots. Radiation and Environmental Biophysics, 29 (2), 129–141. doi: http://doi.org/10.1007/bf01210558
  18. Lebedeva, N. (2001). Millimeter waves in biology and medicine. Radiotekhnika, 1-2 (21-22).
  19. Betskii, O. V., Lebedeva, N. N., Kotrovskaya, T. I. (2002). Stokhasticheskii rezonans i problema vozdeistviya slabykh signalov na biologicheskie sistemy. Millimetrovye volny v biologii i meditsine, 3 (27), 3–11.
  20. Gotovskii, Yu. V., Perov, Yu. F. (2000). Osobennosti biologicheskogo deistviya fizicheskikh faktorov malykh i sverkhmalykh intensivnostei i doz. Moscow, 191.
  21. Kuchin, L. F., Kulish, S. N., Cherenkov, A. D., Litvin, V. V., Chernaya, M. A. (2009). Informatsionnoe pole i ego vzaimosvyaz s okruzhayuschim mirom. Radіoelektronnі і komp’yuternі sistemi, 2 (36), 142–147.
  22. Litvin, V. V. (2007). Sources of electromagnetic radiation with biologically significant influence. Physical processes and fields of technical and biological objects. Kremenchuk: KDPU, 55–56.
  23. Kulysh, S. N., Oleinyk, V. P., Lytvyn, V. V. (2008). Byomedytsynskye prymenenyia myllymetrovikh tekhnolohyi. Sohodennia ta maibutnie farmatsii. Kharkiv: Vyd-vo NFaU, 595.
  24. Lytvyn, V. V., Kulysh, S. N., Oleinyk, V. P. (2009). Ynformatsyonno-volnovie tekhnolohyy korrektsyy funktsyonalnoho sostoianyia cheloveka pry chrezvichainikh sytuatsyiakh. Suchasni informatsiini tekhnolohii upravlinnia ekolohichnoiu bezpekoiu, pryrodokorystuvanniam, zakhodamy v nadzvychainykh sytuatsiiakh. Kyiv: vydavnychyi dim «ADEF-Ukraina», 99–105.
  25. Gulyaev, V. Yu., Oranskii, I. E. (1999). Mekhanizm i lechebnoe primenenie elektromagnitnykh voln millimetrovogo diapazona. Tekhnologiya reabilitatsionnogo naznacheniya i vosstanovitelnoi terapii. Ekaterinburg: «SV-96», 2837.
  26. Buheruk, B. B., Muravska, O. M., Berezhna, E. V. (2001). Imunomoduliuiuchi mozhlyvosti milimetronokhvylovoi tekhnolohii. Visnyk morskoi medytsyny, 1, 131–134.
  27. Devyatkova, N. D. (Ed.) (1991). Vozmozhnosti ispolzovaniya elektromagnitnykh izluchenii maloi moschnosti kraine vysokikh chastot (millimetrovykh voln) v meditsine. Izhevsk: Udmurtiya, 212.
  28. Shrivastava, R. (1997). In Vitro Tests in Pharmacotoxicology: Can We Fill the Gap between Scientific Advances and Industrial Needs? Alternatives to Laboratory Animals, 25 (3), 339–340. doi: http://doi.org/10.1177/026119299702500315
  29. Khadartseva, K. A. (1998). Sochetannoe primenenie nizkouenergeticheskikh krainevysokochastotnogo i lazernogo izlucheniya v ginekologicheskoi praktike. Moscow, 105.
  30. Kovalenko, O. Y., Lytvyn, V. V., Kyvva, F. V. (2007). Modyfykatsyia byolohycheskoi aktyvnosty semen pshenytsi nyzkoyntensyvnim elektromahnytnim vozdeistvyem. Visnyk Kremenchutskoho derzhavnoho politekhnichnoho universytetu imeni Mykhaila Ostrohradskoho, 47 (6), 36–44.
  31. Vainshtein, L. A. (1966). Otkrytye volnovody rezonatory. Moscow: Sovetskoe radio, 395.
  32. Oleinik, V. P., Kulish, S. N., Litvin, V. V. (2007). Apparatnye metody issledovaniya vliyaniya elektromagnitnykh polei na organizm cheloveka. Vіsnik Kremenchutskogo derzhavnogo polіtekhnіchnogo unіversiteu іm. Mikhaila Ostrogradskogo, 6 (47 (1)), 47–49.
  33. Litvin, V. V., Kolbun, N. D., Kulish, S. N., Oleinik, V. P., Sami, A. O. (2009). Modelirovanie parametrov izluchatelya na nesimmetrichnykh volnakh v kruglom dielektricheskom volnovode. Radіoelektronnі і komp’yuternі sistemi, 1 (35), 23–35.
  34. Oleinyk, V. P., Kulysh, S. N., Lytvyn, V. V. (2007). Yskrovoi razriad kak ystochnyk elektromahnytnoho yzluchenyia dlia KVCh terapyy. Intehrovani kompiuterni tekhnolohii v mashynobuduvanni IKTM-2007. Kharkiv: Nats. aerokosm. un-t im. M. Ye. Zhukovskoho «KhAI».
  35. Litvin, V. V., Oleinik, V. P., Kulish, S. N., Sami, A. O. (2010). Generirovanie i otsenka parametrov shirokopolosnogo elektromagnitnogo izlucheniya KVCH diapazona sverkhnizkoi intensivnosti dlya informatsionnykh tekhnologii v meditsine. Radіoelektronnі і komp’yuternі sistemi, 7 (48), 233–235.
  36. Kulish, S. N., Oleinik, V. P., Litvin, V. V., Sami, A. O. (2008). Osobennosti generirovaniya slabointensivnykh elektromagnitnykh voln spetsialnoi formy i energii dlya biologii i meditsiny. «Prikladnaya radioelektronika. Sostoyanie i perspektivy razvitiya» MRF-2008. Vol. IV. Aktualnye problemy biomedinzhenerii. Kharkiv: ANPRE, KHNURE, 184–185.
  37. Voloshyn, Y. A., Kulish, S. M. (2020). Assessment of the parameters of the spark discharge generator for compliance with sanitary standards. Telecommunications and Radio Engineering, 79 (12), 1095–1107. doi: http://doi.org/10.1615/telecomradeng.v79.i12.70
  38. Voloshyn, Yu. A., Kulish, S. M. (2019). Henerator MM-diapazona na volnovodno-shchelevoi lynyy. Suchasnyi rukh nauky. Dnipro, 207–212.
  39. Voloshyn, Yu. A. (2019). Zasoby formuvannia EM vyprominiuvannia radiochastotnoho diapazonu z neteplovym efektom vplyvu na biolohichni obiekty. Informatsiini systemy ta tekhnolohii v medytsyni. Kharkiv.
  40. Voloshyn, Yu. A., Kulish, S. N., Oliinyk, V. P. (2019). Shliakhy pidvyshchennia informatyvnosti analizu bioelektrychnykh syhnaliv. Radyotekhnyka, 196, 98–105.
  41. Kolbun, N. D., Kulish, S. N., Oleinik, V. P., Litvin, V. V. (2009). Physical model of biological system in information-wave interactionwith electromagnetic fields. Radioelektronni i kompiuterni systemy, 2 (36), 148–154.
  42. Kolbun, N. D., Limanskii, YU. P. (2000). Atlas zon informatsionno-volnovoi terapii. Kyiv: Biopolis, 115.
  43. Oleinik, V. P., Kulish, S. N., Litvin, V. V., Sami, A. O. (2008). Fizicheskie mekhanizmy vozdeistviya nizkointensivnogo elektromagnitnogo izlucheniya na bioobekty. «Prikladnaya radioelektronika. Sostoyanie i perspektivy razvitiya» MRF-2008. Vol. IV. Aktualnye problemy biomedinzhenerii. Kharkiv: АНПРE, ХНУРE, 175–177.
  44. Fano, A. (1997). Lethal laws: animal testing, human health and environmental policy. London: Zed Books, 157–159.
  45. Stephens, M.; Langley, G. (Ed.) (1989). Replacing animal experiments. Animal experimentation: the consensus changes. New York, Charman and Hall, 144–168. doi: http://doi.org/10.1007/978-1-349-20376-5_7
  46. Spiridonov, I. N. (2002). Osnovy statisticheskoi obrabotki mediko biologicheskoi informatsii. Moscow: Izdatelstvo MGTU im. N. E. Baumana, 56.
  47. Glants, S. (1998). Mediko-biologicheskaya statistika. Moscow: Praktika, 459.

Downloads

Published

2021-12-08

How to Cite

Voloshyn, Y., Kulish, S., Oliinyk, V., & Frolov, A. (2021). Study of the effects of ultra-low intensity electromagnetic fields on biological objects. Technology Audit and Production Reserves, 6(1(62), 19–26. https://doi.org/10.15587/2706-5448.2021.244643

Issue

Section

Mechanics: Reports on Research Projects