Cooling process optimization during hardening steel in water polyalkylene glycol solutions

Authors

DOI:

https://doi.org/10.15587/2706-5448.2021.247736

Keywords:

quench process, Kondrat'ev number Kn, cooling time, chemical composition, water solutions of polyalkylene glycol (PAG)

Abstract

Objects of investigations are water solutions of polyalkylene glycol (PAG) which are used as the quenchants in the heat-treating industry. They are tested by standard cylindrical probe made of Inconel 600 material. The main and not solved yet is the problem of transition from data achieved for standard probe to data suitable for any form and size of real steel part. It opens possibility to make predictable calculations. Taken this into account, it has been investigated water solutions of PAG of different concentration. It is underlined that cooling intensity of quenchant can be evaluated by Kondratiev number Kn. The mentioned number Kn varies within 0≤Kn≤1 when generalized Biot Biv number varies within 0≤Biv≤∞. As a main achievement of investigation is established correlation between standard Kn number and Kn number of real steel part. In many cases, when film boiling is absent, the established correlation is a linear function. It allows optimizing quenching processes: obtain high surface compressive residual stresses, save alloy elements and improve environment condition. All of this is achieved by tolerating chemical composition of steel with size and form of quenched object as it is proposed by UA Patent No. 114174. Also, the number Kn allows interruption of quench process when surface compressive residual stresses are at their maximum value that essentially improves the quality of steel components. Moreover, interrupted cooling prevents quench crack formation, decreases distortion of quenched steel parts. The results of investigations can be used by engineers in the heat-treating industry and scientists for further research.

Author Biography

Nikolai Kobasko, Intensive Technologies Ltd

PhD, Fellow of ASM International, Consultant

References

  1. ASTM D6482-06(2016). Test Method for Determination of Cooling Characteristics of Aqueous Polymer Quenchants by Cooling Curve Analysis with Agitation (Tensi Method). (2016). ASTM International. doi: https://doi.org/10.1520/d6482-06r16
  2. Tensi, H. M., Stich, A., Totten, G. E.; Totten, G. E., Howes, M. A. H. (Eds.) (1997). Quenching and Quenching Technology. Heat Treatment of Steel Handbook. NY: Marcel Dekker, 157–249.
  3. Totten, G. E., Bates, C. E., Clinton, N. A. (1993). Polymer Quenchants. Handbook of Quenchants and Quenching Technology. OH: ASM International, Materials Park, 161–190.
  4. Tamura, I., Shimizu, N., Okada, T. (1984). A method to judge the quench-hardening of steel from cooling curves of quenching oils. Journal of Heat Treating, 3 (4), 335–343. doi: https://doi.org/10.1007/bf02833127
  5. Moore, D. L., Crawley, S. (1994). Applications of «Standard» Quenchant Cooling Curve Analysis. Materials Science Forum, 163–165, 151–158. doi: https://doi.org/10.4028/www.scientific.net/msf.163-165.151
  6. Kobasko, N., Aronov, M., Powell, J., Totten, G. (2010). Intensive Quenching Systems: Engineering and Design. ASTM International, 234. doi: https://doi.org/10.1520/mnl64-eb
  7. Kobasko, N. (2018). Optimal hardenability steel and method for its composing. Lambert Academic Publishing, 124. ISBN: 978-613-9-82531-8.
  8. Beck, J. V., Blackwell, B., St. Clair Jr., C. R. (1985). Inverse Heat Conduction: Ill-Posed Problems. New York: Wiley-Interscience, 308.
  9. Kondrat'ev, G. M. (1957). Teplovye Izmereniya [Thermal Measurements]. Moscow: Mashgiz, 250.
  10. Lykov, A. V. (1967). Teoriya Teploprovodnosti [Theory of Heat Conductivity]. Moscow: Vysshaya Shkola, 596.
  11. Kobasko, N., Guseynov, Sh., Rimshans, J. (2019). Core Hardness and Microstructure Prediction in Any Steel Part: Microstructure Prediction. Lambert Academic Publishing, 104. ISBN: 978-613-9-94751-5
  12. Grossmann, M. A. (1964). Principles of Heat Treatment. Ohio: American Society for Metals, 303.
  13. French, H. J. (1930). The Quenching of Steels. Cleveland, OH: American Society for Steel Treating, 177.
  14. Kobasko, N. (2019). Uniform and Intense Cooling During Hardening Steel in Low Concentration of Water Polymer Solutions. American Journal of Modern Physics, 8 (6), 76–85. doi: https://doi.org/10.11648/j.ajmp.20190806.11
  15. Tensi, H. M. (1992). Wetting Kinematics. Theory and Technology of Quenching. Berlin, Heidelberg: Springer, 93–116. doi: https://doi.org/10.1007/978-3-662-01596-4_5
  16. Tolubinsky, V. I. (1980). Heat Transfer at Boiling. Kyiv: Naukova Dumka, 316.
  17. Kobasko, N. (2015). Sposib intensivnogo gartuvannya metalevikh virobiv. Ukrainian patent UA No. 109572. Filed on July 7, 2013. Published on September 10, 2015. Bulletin 7. Available at: https://uapatents.com/5-109572-sposib-intensivnogo-gartuvannya-metalevikh-virobiv.html
  18. Logvynenko, P., Moskalenko, A. (2020). Impact Mechanism of Interfacial Polymer Film Formation in Aqueous Quenchants. International Journal of Fluid Mechanics & Thermal Sciences, 6 (4), 108–123. doi: https://doi.org/10.11648/j.ijfmts.20200604.12
  19. Kobasko, N. I., Moskalenko, A. A., Logvinenko, P. N., Dobryvechir, V. V. (2019). New direction in liquid quenching media development. Thermophysics and Thermal Power Engineering, 41 (3), 33–40. doi: https://doi.org/10.31472/ttpe.3.2019.5
  20. Liščić, B. (2016). Measurement and Recording of Quenching Intensity in Workshop Conditions Based on Temperature Gradients. Materials Performance and Characterization, 5 (1), 209–226. doi: https://doi.org/10.1520/mpc20160007
  21. Waldeck, S., Castens, M., Riefler, N., Frerichs, F., Lübben, Th., Fritsching, U. (2019). Mechanisms and Process Control for Quenching with Aqueous Polymer Solutions∗. HTM Journal of Heat Treatment and Materials, 74 (4), 238–256. doi: https://doi.org/10.3139/105.110387
  22. Bhadeshia, H. K. D. H. (2015). Bainite in Steels: Theory and Practice. CRC Press, 616. doi: https://doi.org/10.1201/9781315096674
  23. Liscic, B., Tensi, H. M., Canale, L. C. F., Totten, G. E. (Eds.). (2010). Quenching Theory and Technology. CRC Press, 725. doi: https://doi.org/10.1201/9781420009163
  24. Kerekes, G., Kocsis, M., Felde, I. (2014). The join effect of temperature, agitation and concentration on the cooling power of a waterbased polymer quenchant. European Conference on Heat Treatment and 21st IFHTSE Congress, 12–15 May 2014, Munich, Germany, 261–266.
  25. Canale, L. de C. F., Totten, G. E. (2005). Quenching technology: a selected overview of the current state-of-the-art. Materials Research, 8 (4), 461–467. doi: https://doi.org/10.1590/s1516-14392005000400018
  26. Landek, D., Liščic´, B., Filetin, T., Zupan, J. (2014). Selection of Optimal Conditions for Immersion Quenching. European Conference on Heat Treatment and 21st IFHTSE Congress, 12–15 May 2014, Munich, Germany, 187–195.
  27. Landek, D., Župan, J., Filetin, T. (2012). Systematic analysis of cooling curves for liquid quenchants. International Heat Treatment and Surface Engineering, 6 (2), 51–55. doi: https://doi.org/10.1179/1749514812z.00000000019
  28. Kozdoba, L. A., Krukovskiy, P. G. (1982). Metody resheniya obratnykh zadach teploperenosa [Methods of Solving Inverse Heat Conduction Problems]. Kiev: Naukova Dumka, 360.
  29. Alifanov, O. M. (1875). Outer Inverse Het Conduction Problems. Engineering Physics Journal, 29 (4), 13–25.
  30. Banka, A., Franklin, J., Li, Z., Ferguson, B. L., Aronov, M. (2008). CFD and FEA Used to Improve the Quenching Process. Heat Treating Progress, 9, 50–56.

Downloads

Published

2021-12-21

How to Cite

Kobasko, N. (2021). Cooling process optimization during hardening steel in water polyalkylene glycol solutions. Technology Audit and Production Reserves, 6(1(62), 27–35. https://doi.org/10.15587/2706-5448.2021.247736

Issue

Section

Metallurgical Technology: Reports on Research Projects