Experimental studies of heat exchanger based on heat tubes

Authors

  • Микола Васильович Серко National Technical University of Ukraine " Kyiv Polytechnic Institute" Peremogy avenue , 37 , Kyiv, Ukraine , 03056, Ukraine https://orcid.org/0000-0001-7957-2260
  • Володимир Іванович Мариненко National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremogy avenue , 37 , Kyiv, Ukraine , 03056, Ukraine https://orcid.org/0000-0002-8789-3432
  • Валерій Андрійович Рогачов National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremogy avenue , 37 , Kyiv, Ukraine , 03056, Ukraine https://orcid.org/0000-0001-5489-874X
  • Сергій Монісович Хайрнасов National Technical University of Ukraine " Kyiv Polytechnic Institute" Peremogy avenue , 37 , Kyiv, Ukraine , 03056, Ukraine

DOI:

https://doi.org/10.15587/2312-8372.2014.25325

Keywords:

heat tubes, heat recovery exchanger, recuperative heat exchanger, experimental data, heat transfer surface

Abstract

The currently applied methods of a deep heat recovery in boiler units use recuperative, regenerating, mixing and combined heat exchangers. The progress analysis of developments in the field of recovery facilities shows that their main disadvantages include high weightsize parameters, low aerodynamic heating characteristics and, as a consequence, high metal input, capital and operating costs. For reducing weight-size parameters, a heat recovery exchanger based on heat tubes was designed. The heat exchanger peculiarities is geometrical characteristics of the used heat tubes, in particular, inner longitudinal finning, serving as a capillary structure and a small outside diameter of tubes.

As a result of the studies, it was found that the heat transfer surface of the heat exchanger based heat tubes is on the average 4…5 times less than the surface area of a conventional recuperative heat exchanger, under the same heat power.

The obtained experimental data are useful and important for further studies of heat exchangers based on small-diameter heat tubes with inner longitudinal finning. Their implementation will increase thermal aerodynamic, weight-size and performance criteria of the heat exchange facility under the development in various industries.

Author Biographies

Микола Васильович Серко, National Technical University of Ukraine " Kyiv Polytechnic Institute" Peremogy avenue , 37 , Kyiv, Ukraine , 03056

Master

Department of nuclear power stations and Engineering Thermophysics

Володимир Іванович Мариненко, National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremogy avenue , 37 , Kyiv, Ukraine , 03056

Ph.D. , Associate Professor

Department of nuclear power stations and Engineering Thermophysics

Валерій Андрійович Рогачов, National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremogy avenue , 37 , Kyiv, Ukraine , 03056

Ph.D. , Associate Professor

Department of nuclear power stations and Engineering Thermophysics

Сергій Монісович Хайрнасов, National Technical University of Ukraine " Kyiv Polytechnic Institute" Peremogy avenue , 37 , Kyiv, Ukraine , 03056

Ph.D. , Senior Research Fellow

Department of nuclear power stations and Engineering Thermophysics

References

  1. Rassamakin, B. Space-Applied Aluminum Profiled Heat Pipes with Axial Grooves: Experiments and Simulation Pipe Science and Technology [Text] / B. Rassamakin, S. Khairnasov, A. Rassamakin, O. Alpherova // International Journal. — 2011. — № 1(4). — P. 313–327. — Available at: www/URL: DOI: 10.1615/HeatPipeScieTech.v1.i4.20.
  2. Khairnasov, S. Solar Collectors of Buildings Facade Based on Aluminum Heat Pipes with Colored Coating [Text] / S. Khairnasov, B. Rassamakin, R. Musiy, A. Rassamakin // Journal of Civil Engineering and Architecture. — 2013. — Vol. 7, No. 4(65). — P. 403–409.
  3. Rassamakin, A. The heat recovery exchanger based on the heat pipes technology for the domestic boilers [Text] / A. Rassamakin, D. Kozak // These were the World Sustainable Energy Days conference. — Wels, Austria, 2014. — Vol. 1. — P. 156–158.
  4. Mostafa A. Abd El-Baky. Heat pipes heat exchanger for heat recovery in air conditioning [Text] / Mostafa A. Abd El-Baky, Mousa M. Mohamed // ASME-ATI, «Energy: Production, Distribution and Conservation». — Milan, Italy, 2006. — Vol. 2. — P. 659–668.
  5. Семена, М. Г. Тепловые трубы с металло-волокнистыми капиллярными структурами [Текст] / М. Г. Семена, А. Н. Гершуни, В. К. Зарипов. — Київ: Вища школа, 1984. — 214 с.
  6. Reay, D. Heat Pipes [Text] / D. A. Reay, P. A. Kew. — Ed. 5. — Butterworth-Heinemann, 2006. — 374 p.
  7. Zhuang, J. Prospects of heat pipe technology for year 2010 [Text] / J. Zhuang, H. Zhang // Chemical Engineering and Machinery. — 1998. — Vol. 25, No. 1. — P. 44–49.
  8. Исаченко, В. П. Теплоперадача [Текст] / В. П. Исаченко, В. А. Осипова, А. С. Сукомел. — Москва: Энергоиздат, 1981. — 416 с.
  9. Цветков, Ф. Ф. Тепломассообмен [Текст] / Ф. Ф. Цветков. — Москва: МЭИ, 2006. — 550 с.
  10. Тепловой расчет котлов. Нормативный метод. — Изд. 3-е. перераб. и доп. — СПб.: НПО ЦКТИ-ВТИ, 1998. — 257 с.
  11. Гершуні, О. Н. Порівняльний аналіз теплопередаючої здатності теплообмінників випаровувально-конденсаційного типу та рекуперативних трубчатих теплообмінників [Текст] / О. Н. Гершуні, О. П. Ніщик // Промышленная теплотехника. — 2010. — Т. 10, № 3. — C. 28–36.
  12. Rassamakin, B., Khairnasov, S., Rassamakin, A., Alpherova, O. (2011). Space-Applied Aluminum Profiled Heat Pipes with Axial Grooves: Experiments and Simulation Pipe Science and Technology. International Journal, № 1(4), 313–327. Available: DOI: 10.1615/HeatPipeScieTech. v1.i4.20.
  13. Khairnasov, S., Rassamakin, B., Musiy, R., Rassamakin, A. (2013). Solar Collectors of Buildings Facade Based on Aluminum Heat Pipes with Colored Coating. Journal of Civil Engineering and Architecture, 7/4(65), 403–409.
  14. Rassamakin, A., Kozak, D. (2014). The heat recovery exchanger based on the heat pipes technology for the domestic boilers. These were the World Sustainable Energy Days conference, Wels, Austria, Vol. 1, 156–158.
  15. Mostafa A. Abd El-Baky, Mousa M. Mohamed. (2006). Heat pipes heat exchanger for heat recovery in air conditioning. ASME-ATI, «Energy: Production, Distribution and Conservation», Milan, Italy, Vol. 2, 659–668.
  16. Semena, M. G., Gershuni, A. N., Zaripov, V. K. (1984). Teplovye truby s metallo-voloknistymi kapilljarnymi strukturami. Kiev: Vishha shkola, 214.
  17. Reay, D. A., Kew, P. A. (2006). Heat Pipes. Ed. 5. Butterworth-Heinemann, 374.
  18. Zhuang, J., Zhang, H. (1998). Prospects of heat pipe technology for year 2010. Chemical Engineering and Machinery, Vol. 25, No. 1, 44–49.
  19. Isachenko, V P., Osipova, V. A., Sukomel, A. S. (1981). Teploperadacha. Moskva: Enerhoizdat, 416.
  20. Tsvetkov, F. F. (2006). Teplomassoobmen. Moskva: MEI, 550.
  21. Teplovoi raschet kotlov. Normativnyi metod. (1998). Ed. 3. SPb.: NPO TsKTI-VTI, 257.
  22. Hershunі, O. N., Nіshchik, O. P. (2010). Porіvnial’nii analіz teploperedaiuchoi zdatnostі teploobmіnnikіv viparovuval’no-kondensatsіinoho tipu ta rekuperativnikh trubchatikh teploobmіnnikіv. Promyshlennaia teplotekhnika, T. 10, № 3, 28–36.

Published

2014-06-24

How to Cite

Серко, М. В., Мариненко, В. І., Рогачов, В. А., & Хайрнасов, С. М. (2014). Experimental studies of heat exchanger based on heat tubes. Technology Audit and Production Reserves, 3(4(17), 26–30. https://doi.org/10.15587/2312-8372.2014.25325

Issue

Section

Production reserves