Television pyrometry improvement

Authors

DOI:

https://doi.org/10.15587/2312-8372.2014.25328

Keywords:

television pyrometry, television information-measuring system, CCD, television camera, measurements, temperature

Abstract

The article analyzes the problem of television pyrometry improvement by determination of the range of linearity of the television system luminous-signal characteristics. The contemporary scientific literature practically does not have any materials on the relevant research methods or their results. It places special emphasis on the importance of the problems, laid down in this article.

If we consider characteristics, that determine accuracy of the temperature measurement in methods of the television bispectral pyrometry, the main characteristics shall be equivalent wavelength, effective to the noise difference of color temperatures and luminoussignal characteristic. Clearly, accuracy of the temperature measurement is affected by a dark signal range of the specific device. First of all, in such a case it is necessary to make experimental studies of performance of the facilities, which are used today or evaluated from the perspective of their use in the bispectral television pyrometry. We have accumulated a considerable amount of experimental materials in course of the experiments. They concern formation of signals both in the television information-measuring system parameters of zonal melting, and in the television equipment of another destination, particularly, in the television pyrometers that can be used for control over the temperature conditions for pipe rolling technologies, in the television devices for food product quality control, environmental monitoring, in the television microscopy etc.

Author Biography

Maxim Markin, National Technical University of Ukraine "Kyiv Polytechnic Institute"

PhD, Senior Lecturer

Department of Scientific, Analytical and Ecological Devices and Systems

References

  1. Gajdukevich, Yu. Ch. Sistemy jeffektivnogo teplovizionnogo kontrolja vysokotemperaturnyh polej v proizvodstve izdelij jelektronnoj tehniki [Tekst]: avtoref. dis. … kand. tehn. nauk: 05.27.07 / Yu. Ch. Gajdukevich. — Minsk: Minsk. radioteh. inst., 1991. — 20 s.
  2. Gajdukevich, Yu. Ch. Teplovizionnaja pirometricheskaja sistema [Tekst] / Yu. Ch. Gajdukevich, N. I. Domarjonok, A. P. Dostanko i dr. // Jelektronnaja promyshlennost’. — 1987. — № 3. — S. 59–62.
  3. Poriev, V. A. Konceptual’nі aspekti vikoristannja priladіv z elektronnim rozgortannjam zobrazhennja dlja analіzu optichnih polіv [Tekst] / V. A. Poriev, G. V. Poriev // Naukovі vіstі NTUU «KPІ». — 2001. — № 1. — S. 56–61.
  4. Markіn, M. O. Mul’tispektral’nі televіzіjnі priladi kontrolju visokotemperaturnih tehnologіj [Tekst] / M. O. Markіn, G. M. Zgurovs’kij, V. A. Poriev, Ye. O. Bielorusov, І. V. Bojko // Vostochno-Evropejskij zhurnal peredovyh tehnologij. — 2006. — № 4/2(22). — S. 24–26.
  5. Karachinov, V. A. Issledovanie harakteristik televizionnogo pirometra so vstroennym kalibratorom temperatury [Tekst] / V. A. Karachinov, D. V. Karachinov, S. B. Toricyn // Izmeritel’naja tehnika. — 2007. — № 7. — S. 42–44.
  6. Kuznecov, A. V. Ocenka diapazona izmerenij televizionnogo monohromaticheskogo pіrometra [Tekst] / A. V. Kuznecov // Opticheskij zhurnal. — 2008. — T. 75, № 1. — S. 39–42.
  7. Hubel, P. Spatial Frequency Response of Color Image Sensors: Bayer Color Filters and Foveon X3. [Text] / P. M. Hubel, J. Liu, R. J. Guttosch // Proceedings of SPIE. — 2004. — Vol. 5301, EI’04. — P. 402–407. — Available at: www/URL: doi: 10.1117/12.561568.
  8. Lyon, R. Eyeing the Camera: Into the Next Century [Tekst] / R. Lyon, P. Hubel // IS&T/TSID 10th Color Imaging Conference Proceedings. — Scottsdale, AZ, USA, 2002. — P. 349–355. — Available at: www/URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.102.6377.
  9. Hauer, W. High-temperature dual-band thermal imaging by means of high-speed CMOS camera system [Tekst] / W. Hauer, G. Zauner // SPIE 8661, Image Processing: Machine Vision Applications VI. — 2013. — P. 866103. — Available at: www/URL: doi: 10.1117/12.2002357.
  10. Estevadeordal, J. Multi-Color Imaging Pyrometry Techniques for Gas Turbine Engine Applications [Tekst] / J. Estevadeordal, N. Tralshawala, V. Badami // ASME 2013 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers. — July 2013. — ASME 2013 Fluids Engineering Division Summer Meeting. — P. V002T11A007. — Available at: www/URL: doi:10.1115/FEDSM2013-16369.
  11. Gaydukevich, Yu. Ch. (1991). Systems of an efficient thermalimaging control over the high temperature fields in production of the electronic engineering items. Minsk: Minsk Radiotech. Inst., 20.
  12. Gaydukevich, Yu. Ch., Domaryonok, N. I., Dostanko, A. P. (1987). Thermal-imaging Pyrometric System. Electronic industry, 3, 59–62.
  13. Poryev, V. A., Poryev, G. V. (2001). Conceptual aspects of use of devices with electronic deployment of an image to analyze optical fields. Scientific news of the NTUU «KPI», 1, 56–61.
  14. Markin, M. O., Zgurovskiy, G. M., Poryev, V. A., Byelorusov, Ye. O., Boyko, I. V. (2006). Multispectral television control devices for hightemperature technologies. Eastern-European Journal Of Enterprise Technologies, 4/2(22), 24–26.
  15. Karachinov, V. A., Karachinov, D. V., Toritsyn, S. B. (2007). Analysis of characteristics of the television pyrometer with the fixed temperature calibrator Measurement equipment, 7, 42–44.
  16. Kuznetsov, A. V. (2008). Assessment of a measurement limit of the television monochromatic pyrometer. Optical Magazine, 75, № 1, 39–42.
  17. Hubel, P. M., Liu, J., Guttosch, R. J. (2004). Spatial Frequency Response of Color Image Sensors: Bayer Color Filters and Foveon X3.
  18. Proc. SPIE 5301, Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications V, 402–407. Available: doi: 10.1117/12.561568.
  19. Lyon, R., Hubel, P. (2002). Eyeing the Camera: Into the Next Century. IS&T/TSID 10th Color Imaging Conference Proceedings, Scottsdale, AZ, USA, 349–355. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.102.6377.
  20. Hauer, W., Zauner, G. (2013). High-temperature dual-band thermal imaging by means of high-speed CMOS camera system. SPIE 8661, Image Processing: Machine Vision Applications VI, 866103. Available: doi: 10.1117/12.2002357.
  21. Estevadeordal, J., Tralshawala, N., Badami, V. (2013). Multi-Color Imaging Pyrometry Techniques for Gas Turbine Engine Applications. ASME 2013 Fluids Engineering Division Summer Meeting, V002T11A007. Available: doi:10.1115/FEDSM2013-16369.

Downloads

Published

2014-06-24

How to Cite

Markin, M. (2014). Television pyrometry improvement. Technology Audit and Production Reserves, 3(4(17), 30–33. https://doi.org/10.15587/2312-8372.2014.25328

Issue

Section

Production reserves