Deoxidation and modification of steels with reduced silicon content

Authors

DOI:

https://doi.org/10.15587/2706-5448.2022.256751

Keywords:

silicon-free complex ligatures, chemical composition, mechanical characteristics, alloyed steels

Abstract

The object of research is the processes that affect the mechanical characteristics of steels after the treatment of melts with silicon-free complex master alloys according to existing technologies. One of the most problematic places is the negative effect of silicon on the weldability of low-alloy steel, sharply increasing the heterogeneity of welds in sulfur and phosphorus and increasing their susceptibility to hot cracks. The cyclic strength of welded joints decreases markedly with an increase in the silicon concentration of steel. Also in this case, there is a threat of the formation of silicon monoxide, which significantly increases the fragility of the finished steel products. Also, steels processed with alloys containing silicon are prone to decarburization, the formation of surface defects during hot working and graphite formation, which reduces their endurance limit.

In the research it was possible to prove that the use of silicon-free complex ligatures (SFCL) in smelting made it possible to obtain an increase (23 times) in the entire complex of mechanical and operational properties, especially ductility, impact strength at normal and negative test temperatures (cold resistance) , fatigue strength. In some cases, the level of properties of cast metal reaches the deformed version of its manufacture, for example, rolled products and even metal obtained by electroslag remelting. Processing of the melt of various BKL steels when tapping from the furnace into a pouring ladle instead of aluminum master alloys, silicocalcium and ferrocerium (according to the current technology) provided the required level and high stability of the mechanical properties of 20GML steel. Also, thanks to the use of BCL, it was possible to reduce the consumption of ligatures and deoxidizers by 4.2 kg per ton of liquid metal and increase the yield of rejection of casting defects by 610 %. It has been established in the work that BCL treatment leads to stabilization of the chemical composition, refinement of the grain structure of steels, as well as an increase in its dispersion and the level of mechanical characteristics.

Author Biography

Serhii Polishko, Oles Honchar Dnipro National University

PhD, Senior Researcher, Associate Professor

Department of Production Technology

References

  1. Shreder, A., Roze, A. (1972). Metallografiia zheleza. Vol. 2. Struktura stalei. Lenigrad: Metallurgiia, 284.
  2. Gamaniuk, S. B., Ziuban, N. A., Rutckii, D. V., Ananeva, A. N. (2017). Issledovanie vliianiia rezhimov raskisleniia na formirovanie i raspolozhenie sulfidov v sredneuglerodistykh konstruktcionnykh staliakh. Stal, 2, 15–19.
  3. Luzhanskii, I. B. (2011). Vysokoeffektivnye legirovannye kremniem iznosostoikie stali dlia izgotovitelnoi naplavki detalei stroitelno-dorozhnoi i gornodobyvaiushchei tekhniki. Tekhnologiia metallov, 5, 19–23.
  4. Luzhanskii, I. B. (2011). Vysokoeffektivnye legirovannye kremniem iznosostoikie stali dlia izgotovitelnoi naplavki detalei stroitelno-dorozhnoi i gornodobyvaiushchei tekhniki. Tekhnologiia metallov, 5, 19–23.
  5. Ren, Y., Zhang, L., Yang, W. (2014). Formation and Thermo dynamics of Mg-Al-Ti-O Complex Inclusionsin Mg-Al-Ti-Deoxidized Steel. Metallurgical and Materials Transactions, 45 (6), 2057–2071. doi: http://doi.org/10.1007/s11663-014-0121-0
  6. Sanin, A. F., Bechke, K. V., Bondarenko, O. V., Bozhko, S. A., Vilishchuk, Z. V., Dzhur, V. V. et. al. (2017). Rozrobka naukovykh osnov pidvyshchennia funktsionalnykh vlastyvostei metalevykh materialiv shliakhom kompleksnoi obrobky yikh rozplaviv dlia vyrobiv aviatsiino-kosmichnoi tekhniky i transportu. Otchet po NYR (zakliuch.) No. DR 0115U002397. No. 1-305-15. Dnipro, 145.
  7. Sokolov, I. L., Sokolova, E. V. (2020). Osobennosti desulfuratcii nizkouglerodistykh, nizkokremnistoi stali na agregate «kovsh-pech». Teoriia i tekhnologiia metallurgicheskogo proizvodstva, 3 (34), 4–8.
  8. Kalinina, N. E., Nosova, T. V., Grekova, M. V., Kashenkova, A. V. (2017). Resursosberegaiushchaia tekhnologiia izgotovleniia sharoballonov iz titanovykh splavov. Vestnik dvigatelestroeniia, 1, 43–47.
  9. Dzhur, Y., Kalinina, N., Grekova, M., Guchenkov, M. (2017). Investigation of the influence of nanodispersed compositions obtained by plasmochemical synthesis on the crystallization processes of structural alloys. EUREKA: Physics and Engineering, 6, 63–68. doi: http://doi.org/10.21303/2461-4262.2017.00500
  10. Shapovalov, V. P., Shapovalov, O. V., Shapovalova, O. M., Polіshko, S. O. (2011). Pat. No. 93684 UA. Rozkisliuvach-modifіkator dlia obrobkirozplavіv stalei і splavіv. MPK C22C 35/00, C22C 1/06 (2006.01), C22B 9/10 (2006.01), C21C 1/00, C21C 7/06 (2006.01). No. a200801124, declareted: 30.01.2008; published: 10.03.2011. Bul. No. 5, 4.
  11. Ostash, O. P., Andreiko, І. M., Kulik, V. V., Prokopetc, V. І. (2012). Tciklіchna trіshchinostіikіst stalei zalіznichnikh kolіs tipu KP-2 і KP-T za vplivu ekspluatatcіinikh temperaturno-silovikh faktorіv. Problemy mekhaniki zheleznodorozhnogo transporta: Bezopasnost dvizheniia, dinamika, prochnost podvizhnogo sostava, energosberezhenie. Dnіpropetrovsk: DNUZhT, 105–106.
  12. Luchagina, A., Nikolaev, D., Sanin, A., Tatarko, J., Ulemeyer, K. (2015). Investigation of rail wheels teel crystallographic texture changes due to modification and thermo mechanical treatment. Materials Science and Engineering, 82. doi: http://doi.org/10.1088/1757-899x/82/1/012107
  13. Kalinina, N. E., Nosova, T. V., Grekova, M. V., Guchenkov, M. V. (2017). Vliianie shpatovikh materialov na izmelchenie struktury aliuminiia dispersnymi kompozitciiami. Vestnik dvigatelestroeniia, 2, 116–122.
  14. Brebbia, C., Connor, J. J., Newkirk, J. W., Popov, A. A., Zhilin, A. S. (2018). Progressin Materials Science and Engineering. Springer, 203.
  15. Smirnov, L. A., Rovnushkin, V. A., Oryshchenko, A. S., Kalinin, G. Iu., Miliutc, V. G. (2016). Modifitcirovanie stali i splavov redkozemelnymi elementami. Metallurg, 1, 41–48.
  16. Polishko, S. (2017). Effect of modification on the formation of nonmetallic inclusions in KP-T wheel steel. Technical mechanics, 4, 112–118. doi: http://doi.org/10.15407/itm2017.04.112
  17. Lychagina, T., Nikolayev, D., Sanin, A., Tatarko, J., Ullemeyer, K. (2015). Investigation of rail wheel steel crystallographic texture changes due to modification and thermo mechanical treatment. IOP Conference Series: Materials Science and Engineering, 82. doi: http://doi.org/10.1088/1757-899x/82/1/012107
  18. Polishko, S. O. (2019). Influence of multifunctional modification on stabilization of chemical composition of wheel steels. Journal of Chemistry and Technologies, 27 (1), 31–39. doi: http://doi.org/10.15421/081903

Downloads

Published

2022-04-30

How to Cite

Polishko, S. (2022). Deoxidation and modification of steels with reduced silicon content. Technology Audit and Production Reserves, 2(1(64), 24–27. https://doi.org/10.15587/2706-5448.2022.256751

Issue

Section

Metallurgical Technology: Original Research