Analysis of ways to improve the efficiency of modern satellite communication systems

Authors

DOI:

https://doi.org/10.15587/2706-5448.2022.260346

Keywords:

satellite communication systems, electronic environment, special purpose information and telecommunication system

Abstract

Nowadays, the satellite segment in telecommunications occupies an important place and provides positioning of the global coverage system. However, the development of satellite technologies, compared to terrestrial wireless technologies, is slow. For example, the new DVB-S2 (Digital Video Broadcasting via Satellite) satellite standard contains a small number of improvements and refinements over the previous DVB-S standard. The main improvements are the introduction of codes with low density of LDPC (Low Density Parity Check) and the introduction of adaptive modulation and coding. Given the above, the object of research is modern satellite communication system. The subject of the research is the way to increase the efficiency of modern satellite communication systems. The research aims to analyze the feasibility of using a number of effective technologies in modern wireless systems, such as OFDM, UWB and MIMO, in satellite communication systems. The implementation of the considered options for the use of MIMO technology in satellite communication systems will increase the bandwidth and efficiency of these systems. However, there is a need for additional research to adapt this technology in satellite communication systems. Thus, the analysis allows forming the main directions of improving the efficiency of modern satellite communication systems. This analysis allows:

– to formulate new approaches to increase the efficiency of modern satellite communication systems;

– to substantiate new technological solutions for the construction of transceivers of satellite communication systems;

– to identify possible areas of research to improve the efficiency of modern satellite communication systems.

Author Biography

Oleksandr Trotsko, Military Institute of Telecommunications and Informatization named after Heroes of Kruty

PhD, Associate Professor

Department of Automated Control Systems

References

  1. Shyshatskyi, A. V., Bashkyrov, O. M., Kostyna, O. M. (2015). Rozvytok intehrovanykh system zv’iazku ta peredachi danykh dlia potreb Zbroinykh Syl. Naukovo-tekhnichnyi zhurnal «Ozbroiennia ta viiskova tekhnika», 1 (5), 35–40.
  2. Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et. al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (2 (105), 37–47. doi: http://doi.org/10.15587/1729-4061.2020.203301
  3. Bodianskyi, E. V., Strukov, V. M., Uzlov, D. Yu. (2017). Generalized metrics in the problem of analysis of multidimensional data with different scales. Zbirnyk naukovykh prats Kharkivskoho natsionalnoho universytetu Povitrianykh Syl, 3 (52), 98–101.
  4. Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. doi: http://doi.org/10.21303/2461-4262.2020.001353
  5. Zuiev, P., Zhyvotovskyi, R., Zvieriev, O., Hatsenko, S., Kuprii, V., Nakonechnyi, O. et. al. (2020). Development of complex methodology of processing heterogeneous data in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (106)), 14–23. doi: http://doi.org/10.15587/1729-4061.2020.208554
  6. Shyshatskyi, A., Zvieriev, O., Salnikova, O., Demchenko, Ye., Trotsko, O., Neroznak, Ye. (2020). Complex Methods of Processing Different Data in Intellectual Systems for Decision Support System. International Journal of Advanced Trends in Computer Science and Engineering, 9 (4), 5583–5590. doi: http://doi.org/10.30534/ijatcse/2020/206942020
  7. Trotsenko, R. V., Bolotov, M. V. (2014). Protsess yzvlechenyia dannikh yz raznotypnikh ystochnykov. Pryvolzhskyi nauchnii vestnyk, 12-1 (40), 52–54.
  8. Rotshtein, A. P. (1999). Yntellektualnie tekhnolohyy ydentyfykatsyy: nechёtkye mnozhestva, henetycheskye alhorytmi, neironnie sety. Vynnytsa: UNYVERSUM, 320.
  9. Alpeeva, E. A., Volkova, I. I. (2019). The use of fuzzy cognitive maps in the development of an experimental model of automation of production accounting of material flows. Russian Journal of Industrial Economics, 12 (1), 97–106. doi: http://doi.org/10.17073/2072-1633-2019-1-97-106
  10. Zahranovskaia, A. V., Eissner, Yu. N. (2017). Modelyrovanye stsenaryev razvytyia ekonomycheskoi sytuatsyy na osnove nechetkykh kohnytyvnykh kart. Sovremennaia ekonomyka: problemy y reshenyia, 10 (94), 33‒47. doi: http://doi.org/10.17308/meps.2017.10/1754
  11. Simankov, V. S., Putiato, M. M. (2013). Issledovanie metodov kognitivnogo analiza. Sistemnyi analiz, upravlenie i obrabotka informatcii, 13, 31‒35.
  12. Onykiy, B., Artamonov, A., Ananieva, A., Tretyakov, E., Pronicheva, L., Ionkina, K., Suslina, A. (2016). Agent Technologies for Polythematic Organizations Information-Analytical Support. Procedia Computer Science, 88, 336–340. doi: http://doi.org/10.1016/j.procs.2016.07.445
  13. Ko, Y.-C., Fujitа, H. (2019). An evidential analytics for buried information in big data samples: Case study of semiconductor manufacturing. Information Sciences, 486, 190–203. doi: http://doi.org/10.1016/j.ins.2019.01.079
  14. Çavdar, A. B., Ferhatosmanoğlu, N. (2018). Airline customer lifetime value estimation using data analytics supported by social network information. Journal of Air Transport Management, 67, 19–33. doi: http://doi.org/10.1016/j.jairtraman.2017.10.007
  15. Ballester-Caudet, A., Campíns-Falcó, P., Pérez, B., Sancho, R., Lorente, M., Sastre, G., González, C. (2019). A new tool for evaluating and/or selecting analytical methods: Summarizing the information in a hexagon. TrAC Trends in Analytical Chemistry, 118, 538–547. doi: http://doi.org/10.1016/j.trac.2019.06.015
  16. Ramaji, I. J., Memari, A. M. (2018). Interpretation of structural analytical models from the coordination view in building information models. Automation in Construction, 90, 117–133. doi: http://doi.org/10.1016/j.autcon.2018.02.025
  17. Pérez-González, C. J., Colebrook, M., Roda-García, J. L., Rosa-Remedios, C. B. (2019). Developing a data analytics platform to support decision making in emergency and security management. Expert Systems with Applications, 120, 167–184. doi: http://doi.org/10.1016/j.eswa.2018.11.023
  18. Chen, H. (2018). Evaluation of Personalized Service Level for Library Information Management Based on Fuzzy Analytic Hierarchy Process. Procedia Computer Science, 131, 952–958. doi: http://doi.org/10.1016/j.procs.2018.04.233
  19. Chan, H. K., Sun, X., Chung, S.-H. (2019). When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? Decision Support Systems, 125, 113114. doi: http://doi.org/10.1016/j.dss.2019.113114
  20. Osman, A. M. S. (2019). A novel big data analytics framework for smart cities. Future Generation Computer Systems, 91, 620–633. doi: http://doi.org/10.1016/j.future.2018.06.046
  21. Gödri, I., Kardos, C., Pfeiffer, A., Váncza, J. (2019). Data analytics-based decision support workflow for high-mix low-volume production systems. CIRP Annals, 68 (1), 471–474. doi: http://doi.org/10.1016/j.cirp.2019.04.001
  22. Harding, J. L. (2013). Data quality in the integration and analysis of data from multiple sources: some research challenges. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-2/W1, 59–63. doi: http://doi.org/10.5194/isprsarchives-xl-2-w1-59-2013
  23. Rybak, V. A., Akhmad, Sh. (2016). Analiticheskii obzor i sravnenie sushchestvuiushchikh tekhnologii podderzhki priniatiia reshenii. Sistemnyi analiz i prikladnaia informatika, 3, 12–18.
  24. Rodionov, M. A. (2014). Problemy informatcionno-analiticheskogo obespecheniia sovremennogo strategicheskogo menedzhmenta. Nauchnyi Vestnik MGTU GA, 202, 65–69.
  25. Bednář, Z. (2018). Information Support of Human Resources Management in Sector of Defense. Vojenské rozhledy, 27 (1), 45–68.
  26. Palchuk, V. (2017). Methods of Content-Monitoring and Content-Analysis of Information Flows: Modern Features. Naukovi pratsi Natsionalnoi biblioteky Ukrainy imeni V. I. Vernadskoho, 48, 506–526.
  27. Mir, S. A., Padma, T. (2016). Evaluation and prioritization of rice production practices and constraints under temperate climatic conditions using Fuzzy Analytical Hierarchy Process (FAHP). Spanish Journal of Agricultural Research, 14 (4), e0909. doi: http://doi.org/10.5424/sjar/2016144-8699
  28. Kliushin, V. V. (2014). Teoretiko-metodologicheskie osnovy formirovaniia i otcenki urovnia strategicheskogo ekonomicheskogo potentciala ekonomicheskikh sistem. Sovremennye tekhnologii upravleniia, 12 (48). Available at: https://sovman.ru/article/4805/
  29. Bogomolova, I. P., Omelchenko, O. M. (2014). Analiz vliianiia faktorov effektivnosti khoziaistvennoi deiatelnosti na ekonomiku integrirovannykh struktur. Vestnik Voronezhskogo gosudarstvennogo universiteta inzhenernykh tekhnologii, 3, 157–162.
  30. Sherafat, A., Yavari, K., Davoodi, S. M. R. (2014). Evaluation of the Strategy Management Implementation in Project-Oriented Service Organizations. Acta Universitatis Danubius. Economica, 10 (1), 16–25.
  31. Koshlan, A., Salnikova, O., Chekhovska, M., Zhyvotovskyi, R., Prokopenko, Y., Hurskyi, T. et. al. (2019). Development of an algorithm for complex processing of geospatial data in the special-purpose geoinformation system in conditions of diversity and uncertainty of data. Eastern-European Journal of Enterprise Technologies, 5 (9 (101)), 35–45. doi: http://doi.org/10.15587/1729-4061.2019.180197
  32. Mahdi, Q. A., Shyshatskyi, A., Prokopenko, Y., Ivakhnenko, T., Kupriyenko, D., Golian, V. et. al. (2021). Development of estimation and forecasting method in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (9 (111)), 51–62. doi: http://doi.org/10.15587/1729-4061.2021.232718

Downloads

Published

2022-06-30

How to Cite

Trotsko, O. (2022). Analysis of ways to improve the efficiency of modern satellite communication systems. Technology Audit and Production Reserves, 3(2(65), 51–56. https://doi.org/10.15587/2706-5448.2022.260346

Issue

Section

Systems and Control Processes: Reports on Research Projects