Method of equilibrium solution finding for port’s operators in competitive environment of oligopoly type

Authors

DOI:

https://doi.org/10.15587/2312-8372.2014.26296

Keywords:

ports operators, competition, oligopoly, transportation problem, the Cournot equilibrium, the Stackelberg equilibrium

Abstract

In the article, a theoretical approach is proposed for development of competitive strategies of ports terminals (OPT) at local market of stevedoring services. The aim of  research is development of method for equilibrium solution which is based on synthesis of microeconomics (theory of firm) and operations research methods (transportation type problems). Such approach allows give to OPT the concrete quantitative and qualitative recommendations for cargo flows attraction under competition of oligopoly type taking into account the co-operation with the transportation companies. These recommendations are connected with discounts of OPT from basic tariffs for transshipment. Formally these discounts are taking into account as coefficients of corresponding objective functions (total profit of OPT and transport companies) with the help of so-called demand functions. It is supposed that demand function for cargo transshipment at each port’s terminal depends linearly on total cargo flow of all port terminals. The Cournot equilibrium cargo flows’ distribution among ports terminals is found in evident form. The Stackelberg equilibrium solution is analyzed, as well. Some other market’s structures for ports operators are considered.

The results of research may be used in managerial practice of the ports operators when developing by them the competitive strategies at local market of stevedoring service.

Author Biographies

Михаил Яковлевич Постан, Odessa National Maritime University, 34, Mechnikov Str., Odessa, Ukraine, 65029

Doctor of Economics, Professor, Head of Department

Department of Management and Marketing in maritime transport

Ирина Владиславовна Савельева, Odessa National Maritime University, 34, Mechnikov Str., Odessa, Ukraine, 65029

Doctor of Economic Sciences, Associate Professor

Department of maritime transport

References

  1. Porter, M. (2007). Konkurentnaia stratehyia. Metodyka analyza otraslei y konkurentsyy [Competitive strategy. Techniques for analyzing and competitors]. M.: Alpyna Byznes Buks, 453.
  2. Intriligator, M. (1975). Matematycheskye metody optymyzatsyy y ekonomycheskaia teoryia [Mathematical optimization and economic theory]. M.: Prohress, 606.
  3. Yastremskiy, O. I., Gritsenko, O. G. (1998). Osnovy microeconomiki. Kyiv: Znannya, 673.
  4. Brandimarte, P., Zotteri, G. (2007, June 25). Introduction to Distribution Logistics. John Wiley & Sons, Inc., 590. doi:10.1002/9780470170052.
  5. Kholodenko, A. M., Sudarev, V. A. (2004). Vertikal’naya integratsiya v logisticheskoj tsepochke postavok. Metody ta zasoby upravlinnya rozvytkom transportnyh system, №7, 208-221.
  6. Kobets, V. M. (2005). Rivnovaga logistychnoi systemy pry goryzontalnoi integratsii uchasnykiv v umovach infirmatsinoi asymmetrii. Metody ta zasoby upravlinnya rozvytkom transportnyh system, №9, 83-101.
  7. Savel’eva, I. V. (2012). Printsipy strategicheskogo upravleniya v deyatel’nosti operatora konteinernogo terminala. Odessa: Astroprint, 304.
  8. Postan, M. Ya. (2006). Ekonomiko-matematicheskie modeli smeschannyh perevozok. Odessa: Astroprint, 376.
  9. Gol’stein, E. G., Yudin, D. B. (1969). Zadachi lineinogo programmirovaniya transpotnogo tipa. Moskva: Nauka, 382.
  10. Kuntsi, H. P., Krelle, W. (1965). Nelyneinoe prohrammyrovanye [Nichtlineare programmierung]. M.: Sovetskoe radyo, 303.
  11. Odell, P. L., Duran, B. S. (1974). Cluster Analysis. Lecture Notes in Economics and Mathematical Systems. Springer Berlin Heidelberg, 140. doi:10.1007/978-3-642-46309-9.

Published

2014-07-24

How to Cite

Постан, М. Я., & Савельева, И. В. (2014). Method of equilibrium solution finding for port’s operators in competitive environment of oligopoly type. Technology Audit and Production Reserves, 4(2(18), 58–63. https://doi.org/10.15587/2312-8372.2014.26296